US009432433B2

a2 United States Patent
Luby et al.

US 9,432,433 B2
Aug. 30, 2016

(10) Patent No.:
45) Date of Patent:

(54) ENHANCED BLOCK-REQUEST STREAMING
SYSTEM USING SIGNALING OR BLOCK
CREATION

(75) Inventors: Michael G. Luby, Berkeley, CA (US);

Mark Watson, San Francisco, CA
(US); Lorenzo Vicisano, Berkeley, CA
(US); Payam Pakzad, Mountain View,
CA (US); Bin Wang, Fremont, CA
(US); Ying Chen, San Diego, CA (US);
Thomas Stockhammer, Bergen (DE)
(73)

Assignee: QUALCOMM Incorporated, San

Diego, CA (US)
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by 84 days.

@
(22)

Appl. No.: 12/887,476

Filed: Sep. 21, 2010

(Under 37 CFR 1.47)

Prior Publication Data

US 2011/0238789 Al Sep. 29, 2011

(65)

Related U.S. Application Data

Provisional application No. 61/244,767, filed on Sep.
22, 2009, provisional application No. 61/257,719,
filed on Nov. 3, 2009, provisional application No.
61/258,088, filed on Nov. 4, 2009, provisional

(60)

(Continued)

Int. CL.
GO6F 15/16
HO4L 29/06

(51)
(2006.01)
(2006.01)

(Continued)

(52) US.CL

CPC

HO4L 65/604 (2013.01); HO4L 65/607
(2013.01); HO4N 21/235 (2013.01);

(58) Field of Classification Search
HO4L 65/602; HO4L 65/607;, HO4AN
21/23106; HO4N 21/23406; HO4N 21/44209;
HO4N 21/8456
USPC 709/219
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
3,909,721 A 9/1975 Bussgang et al.
4,365,338 A 12/1982 McRae et al.
(Continued)
FOREIGN PATENT DOCUMENTS
CN 1338839 A 3/2002
CN 1425228 A 6/2003
(Continued)

OTHER PUBLICATIONS

Bross, et al., “High efficiency video coding (HEVC) text specifi-
cation draft 6,” Joint Collaborative Team on Video Coding (JCT-
VC) of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11 JCTVC-
H1003, 7th Meeting: Geneva, CH, Nov. 21-30, 2011, pp. 259.

(Continued)

Primary Examiner — Bryan Lee
(74) Attorney, Agent, or Firm — Campbell Chiang

(57) ABSTRACT

A block-request streaming system provides for improve-
ments in the user experience and bandwidth efficiency of
such systems, typically using an ingestion system that gen-
erates data in a form to be served by a conventional file
server (HTTP, FTP, or the like), wherein the ingestion
system intakes content and prepares it as files or data
elements to be served by the file server. The system might
include controlling the sequence, timing and construction of
block requests, time based indexing, variable block sizing,
optimal block partitioning, control of random access point
placement, including across multiple presentation versions,
dynamically updating presentation data, and/or efficiently
presenting live content and time shifting.

(Continued) 8 Claims, 29 Drawing Sheets
102
- movies
- audio
Content |- i\;xl"sz? Ses
ontent |- imegd data presentations 100
- hybrid presentations
103 104 106 108
e 7 ~ Request ~
Content _ D«"‘ 12
Preparation HTTP [HTTP HTTP
(Media Streaming Cache Streaming
Ingestion Server _ f Client
System) 5,,1 1
,.'::‘ Ll "] Request ,.':
Program Program Program Program
Caode Code Code
Content
vo |

US 9,432,433 B2

Page 2
Related U.S. Application Data 5,933,056 A 8/1999 Rothenberg
o 5,936,659 A 8/1999 Viswanathan et al.
application No. 61/285,779, filed on Dec. 11, 2009, 5,936,949 A 8/1999 Pasternak et al.
provisional application No. 61/296,725, filed on Jan. 2’333’8% ﬁ lg;}ggg gahc[l)ﬂ et al.
A . . s , erz erg
20, 2010, provisional application No. 61/372,399, 5983383 A 11/1999 Wolf
filed on Aug. 10, 2010. 5993056 A 11/1999 Vaman et al.
6,005,477 A 12/1999 Deck et al.
on BB S
HO4N 21/231 2011.01 012, ischer et al.
HOAN 21/234 (2011 01) 6,014,706 A 1/2000 Cannon et al.
(01) 6,018,359 A 1/2000 Kermode et al.
HO4N 21/2343 (2011.01) 6,041,001 A 3/2000 Estakhri
HO4N 21/235 (2011.01) 6,044,485 A 3/2000 Dent et al.
HO4N 21/258 (2011.01) 6061820 A 52000 Nakakita et al.
,073, uby et al.
HOAN 212662 (QO1L01) N
(2011.01) 6.079.042 A 6/2000 Vaman et al.
HO4N 21/44 (2011.01) 6,081,907 A 6/2000 Witty et al.
HO4N 21/4402 (2011.01) 6,081,009 A 6/2000 Luby et al.
HO4N 21/442 (2011.01) GOSLOIS A 62000 Spiclman
,088, ruck et al.
HO4IN 21/84 (2011.01) 6097320 A 82000 Kuki et al.
HO4N 21/845 (2011.01) 6,134,596 A 10/2000 Bolosky et al.
HO4N 21/24 (2011.01) 6,141,053 A 10/2000 Saukkonen
(52) US. CL 6,141,787 A 10/2000 Kunisa et al.
CPC .. HO4N21/23106 (2013.01); HO4N 21/23406 g}‘s‘ﬂ% 2 }%888 &";if(‘)bggaft al.
(2013.01); HO4N 21/234327 (2013.01); HO4N 6:163:870 A 12/2000 Luby et al. '
21/25808 (2013.01); HO4N 21/2662 (2013.01); 6,166,544 A 12/2000 Debbins et al.
HO4N 21/435 (2013.01); HO4N 21/44004 6,175,944 Bl 1/2001 Urba_nke et al.
(2013.01); HO4N 21/44209 (2013.01); HO4N g}gggg Ei %881 Eorkln I
21/440227 (2013.01); HO4N 21/84 (2013.01); 6195777 BL 22001 Lﬁg‘ypft“jﬂa
HO4N 21/8456 (2013.01); HO4L 65/4084 6:223:324 Bl 4/2001 Sinha et ai.
(2013.01); HO4L 65/602 (2013.01); HO4L 6,226,259 Bl 5/2001 Piret
65/80 (2013.01); HO4N 21/2401 (2013.01) 6,226,301 Bl 5/2001 Cheng et al.
6,229,824 Bl 52001 Marko
. 6,243,846 Bl 6/2001 Schuster et al.
(56) References Cited 6,272,658 Bl 82001 Stecle et al.
6,278,716 Bl 8/2001 Rubenstein et al.
U.S. PATENT DOCUMENTS 6298462 Bl 102001 Yi
. 6307,487 Bl 10/2001 Luby
4,589,112 A 5/1986 Karim 6,314,280 Bl 11/2001 Eberlein et al.
4,901,319 A~ 2/1990 Ross 6,320,520 Bl 11/2001 Luby
5,136,592 A 8/1992 Weng 6,332,163 Bl 12/2001 Bowman-Amuah
§’§§S’§2$ i 1%333‘ %ﬁfs wtal 6.333,926 Bl 12/2001 Van Heeswyk et al.
5331320 A 7/1994 Cideciyan et al. g’ggg’ggg gf ‘5%88% %ﬁztyet al
5371,532 A 12/1994 Gelman et al. T '
371, 6411223 Bl 6/2002 Haken et al.
5372,532 A 12/1994 Robertson, Jr. Ca15396 Bl 72000 Gavta of
5379297 A 1/1995 Glover et al o upta et
Tl A 511993 Debey 6420982 Bl 7/2002 Brown
5425050 A 6/1995 Schrciber ot al 643025 BI 42002 Dilten tal
3432787 A 771995 Chethik 6445717 B 9/2002 Gibson et al.
3455823 A 10/1995 Noreen et al. 6459811 Bl 10/2002 Hurst, Jr.
Sgosdis A 11095 Seinoha 6,466,698 Bl 10/2002 Creusere
$524025 A 6/1996 Lawrence ef al 0473010 Bl 102002 Vityaev et al.
1024, I : A86, uby et al.
5,566,208 A 10/1996 Balakrishnan 6,487,692 Bl 11/2002 Morelos-Zaragoza
5,568,614 A 10/1996 Mendelson et al. 6.496.980 Bl 12/2002 Tillman et al.
5,583,784 A 12/1996 Kapust et al. 6:497.479 Bl 122002 Stoffel et al.
5,608,738 A 3/1997 Matsushita 6,510,177 Bl 1/2003 De Bonet et al.
2’2}‘}2‘6‘; i g;}gg; ﬁiﬁ;‘:ﬁegf;l 6,523,147 Bl 2/2003 Kroeger et al.
642, : 6,535,920 Bl 3/2003 Parry et al.
5,659,614 A 8/1997 Bailey, III 6377599 Bl 62003 Gupta et al.
g’gg?"s‘g ﬁ S?BSZ ggey 6,584,543 B2 6/2003 Williams et al.
5751336 A 5/1998 Aggarwal et al. g’g?i’gég gé ggggg Ev‘ﬁfgang
5,754,563 A 5/1998 While 6615431 Bl 92003 Gonikber
5757415 A 5/1998 Asamizuya et al. 6’631,172 Bl 10/2003 Shokr lla}}gl' |
5,802,394 A 9/1998 Baird et al. 3 hokrollaht et al.
2805825 A 9/199% Damtocls ct al 6,633,856 B2 10/2003 Richardson et al.
5.835.165 A 11/1998 Keate et al. 6,641,366 B2 112003 Nordholf
5,844,636 A 12/1998 JOSGph et al. 6,643,332 Bl 11/2003 Morelos-Zaragoza et al.
5,852,565 A 12/1998 Demos 6,677,864 B2 1/2004 Khayrallah
5,870,412 A 2/1999 Schuster et al. 6,678,855 Bl 1/2004 Gemmell
5,903,775 A 5/1999 Murray 6,694,476 Bl 2/2004 Sridharan et al.
5917,852 A 6/1999 Butterfield et al. 6,704,370 Bl 3/2004 Chheda et al.
5926205 A 7/1999 Krause et al. 6,732,325 Bl 5/2004 Tash et al.

US 9,432,433 B2

Page 3
(56) References Cited 7,559,004 Bl 7/2009 Chang et al.
7,570,665 B2 8/2009 Ertel et al.
U.S. PATENT DOCUMENTS 7,574,706 B2 8/2009 Meulemans et al.
7,590,118 B2 9/2009 Giesberts et al.
6,742,154 Bl 5/2004 Barnard 7,597,423 B2 10/2009 Silverbrook
6,748,441 Bl 6/2004 Gemmell 7,613,183 B1 11/2009 Brewer et al.
6.751.772 Bl 6/2004 Kim et al. 7,633,413 B2 12/2009 Shokrollahi et al.
6.765.866 Bl 7/2004 Wyatt 7,633,970 B2 12/2009 Van Kampen et al.
6,798,791 Bl 9/2004 Riazi et al. 7,644,335 B2 1/2010 Luby et al.
6,804,202 Bl 10/2004 Hwang 7,650,036 B2 1/2010 Lei et al.
6,810,499 B2 10/2004 Sridharan et al. 7,668,198 B2 2/2010 Yi et al.
6,820,221 B2 11/2004 Fleming 7,676,735 B2 3/2010 Luby et al.
6,831,172 Bl 12/2004 Barbucci et al. 7,711,068 B2 5/2010 Shokrollahi et al.
6.849.803 Bl 2/2005 Gretz 7,720,096 B2 5/2010 Klemets
6.850.736 B2 2/2005 McCune, Jr. 7,720,174 B2 5/2010 Shokrollahi et al.
6,856,263 B2 2/2005 Shokrollahi et al. 7,721,184 B2 52010 Luby et al.
6,868,083 B2 3/2005 Apostolopoulos et al. 7,805456 B2 9/2010 Meijer et al.
6,876,623 Bl 4/2005 Lou et al. 7,812,743 B2 10/2010 Luby
6,882,618 Bl 4/2005 Sakoda et al. 7,813,822 Bl 10/2010 Hoflberg
6,895,547 B2 5/2005 Eleftheriou et al. 7,831,896 B2 112010 Amram et al.
6,909,383 B2 6/2005 Shokrollahi et al. 7,895,629 Bl 2/2011 Shen et al.
6,928,603 Bl 8/2005 Castagna et al. 7,924913 B2 4/2011 Sullivan et al.
6,937,618 Bl 8/2005 Noda et al. 7,956,772 B2 6/2011 Shokrollahi et al.
6,956,875 B2 10/2005 Kapadia et al. 7,961,700 B2 6/2011 Malladi et al.
6,965,636 Bl 11/2005 DesJardins et al. 7,971,129 B2 6/2011 Watson et al.
6,985,459 B2 1/2006 Dickson 7,979,769 B2 7/2011 Lee et al.
6,995,692 B2 2/2006 Yokota et al. 8,027,328 B2 9/2011 Yang et al.
7,010,052 B2 3/2006 Dill et al. 8,028,322 B2 9/2011 Riedl et al.
7,030,785 B2 4/2006 Shokrollahi et al. 8,081,716 B2 12/2011 Kang et al.
7,031,257 Bl 4/2006 Lu et al. 8,135,073 B2~ 3/2012 Shen
7,057,534 B2 6/2006 Luby 8,185,794 B2 5/2012 Lohmar et al.
7,068,681 B2 6/2006 Chang et al. 8,185,809 B2 ~ 5/2012 Luby et al.
7,068,729 B2 6/2006 Shokrollahi et al. RE43,741 E 10/2012 Shokrollahi et al.
7.072,971 B2 7/2006 Lassen et al. 8,301,725 B2* 10/2012 Biderman et al. 709/217
7:073:191 B2 7/2006 Srikantan et al. 8,327,403 Bl 12/2012 Chilvers et al.
7,100,188 B2 8/2006 Hejna, Jr. 8,340,133 B2 12/2012 Kim et al.
7,110,412 B2 9/2006 Costa et al. 8,422,474 B2 42013 Park et al.
7,139,660 B2 11/2006 Sarkar et al. 8,462,643 B2 6/2013 Walton et al.
7,139,960 B2 11/2006 Shokrollahi 8,544,043 B2 9/2013 Parekh et al.
7,143,433 Bl 11/2006 Duan et al. 8,572,646 B2 10/2013 Haberman et al.
7,151,754 Bl 12/2006 Boyce et al. 8,615,023 B2 12/2013 Oh et al.
7,154,951 B2 12/2006 Wang 8,638,796 B2 1/2014 Dan et al.
7,164,370 Bl 1/2007 Mishra 8,713,624 Bl ~ 4/2014 Harvey et al.
7,164,882 B2 1/2007 Poltorak 8,737,421 B2 5/2014 Zhang et al.
7,168,030 B2 1/2007 Ariyoshi 8,775,174 B2 7/2014 Conejero et al.
7,219,280 B2 5/2007 Dickson 8,806,050 B2 8/2014 Chen et al.
7,231,404 B2 6/2007 Paila et al. 8,812,735 B2 82014 Igarashi
7,233,264 B2 6/2007 Luby 8,874,436 B2 10/2014 Goldhor
7,240,236 B2 7/2007 Cutts et al. 2001/0015944 Al 8/2001 Takahashi et al.
7.240358 B2 7/2007 Horn et al. 2001/0033586 Al 10/2001 Takashimizu et al.
7243285 B2 7/2007 Foisy et al. 2002/0009137 Al 1/2002 Nelson et al.
7,249.291 B2 7/2007 Rasmussen et al. 2002/0023246 Al 2/2002 lin
7,254,754 B2 8/2007 Hetzler et al. 2002/0053062 Al 52002 Szymanski
7,257,764 B2 8/2007 Suzuki et al. 2002/0083345 Al 6/2002 Halliday et al.
7,265,688 B2 9/2007 Shokrollahi et al. 2002/0085013 Al 7/2002 Lippincott
7,289,506 Bl 10/2007 Hannuksela 2002/0133247 Al 9/2002 Smith et al.
7.293.222 B2 11/2007 Shokrollahi et al. 2002/0141433 Al 10/2002 Kwon et al.
7.295.573 B2 11/2007 Yi et al. 2002/0143953 A1 10/2002 Aiken
7,3()4:99() B2 12/2007 Rajwan 2002/0191116 Al 12/2002 Kessler et al.
7.318.180 B2 1/2008 Starr 2003/0005386 Al 1/2003 Bhatt et al.
7.320.099 B2 1/2008 Miura ct al. 2003/0009579 A1 1/2003 Kawai et al.
7,363:048 B2 4/2008 Cheng et al. 2003/0037299 Al 2/2003 Smith
7,391,717 B2 6/2008 Klemets et al. 2003/0086515 Al 5/2003 Trans et al.
7.394.407 B2 7/2008 Shokrollahi et al. 2003/0101408 Al 5/2003 Martinian et al.
7398.454 B2 7/2008 Cai et al. 2003/0106014 A1 6/2003 Dohmen et al.
7,406:010 B2 7/2008 Hyen 2003/0138043 Al 7/2003 Hannuksela
7.409.626 Bl 8/2008 Schelstraete 2003/0194211 A1 10/2003 Abecassis
7:412’641 B2 8/2008 Shokrollahi 2003/0207696 Al 112003 Willenegger et al.
7,418:651 B2 8/2008 Luby et al. 2003/0224773 Al 12/2003 Deeds
7.447,791 B2 11/2008 Leaning et al. 2004/0015768 Al 1/2004 Bordes et al.
7,451,377 B2 11/2008 Shokrollahi 2004/0031054 Al 2/2004 Dankworth et al.
7,483,447 B2 1/2009 Chang et al. 2004/0049793 Al 3/2004 Chou
7,483,489 B2 1/2009 Gentric et al. 2004/0066854 Al 4/2004 Hannuksela
7,492,828 B2 2/2009 Keerthi 2004/0081106 Al 4/2004 Bruhn
7,512,697 B2 3/2009 Lassen et al. 2004/0083015 Al 4/2004 Patwari
7,525,994 B2 4/2009 Scholte 2004/0096110 Al 5/2004 Yogeshwar et al.
7,529,806 B1* 5/2009 Shteyncceeeeenn. 709/217 2004/0117716 Al 6/2004 Shen
7,532,132 B2 5/2009 Shokrollahi et al. 2004/0151109 Al 8/2004 Batra et al.
7,555,006 B2 6/2009 Wolfe et al. 2004/0162071 Al 8/2004 Grilli et al.

US 9,432,433 B2

Page 4
(56) References Cited 2007/0300127 Al 12/2007 Watson et al.
2008/0010153 Al 1/2008 Pugh-O’Connor et al.
U.S. PATENT DOCUMENTS 2008/0034273 Al 2/2008 Luby
2008/0052753 Al 2/2008 Huang et al.
2004/0207548 Al 10/2004 Kilbank 2008/0058958 Al 3/2008 Cheng
2004/0231004 Al 11/2004 Seo 2008/0059532 Al 3/2008 Kazmi et al.
2004/0240382 Al 12/2004 Ido et al. 2008/0066136 Al 3/2008 Dorai et al.
2004/0255328 Al 12/2004 Baldwin et al. 2008/0075172 Al 3/2008 Koto
2005/0004997 Al 1/2005 Balcisoy et al. 2008/0086751 Al 4/2008 Horn et al.
2005/0018635 Al 1/2005 Proctor, Jr. 2008/0101478 Al 5/2008 Kusunoki
2005/0028067 Al 2/2005 Weirauch 2008/0134005 Al 6/2008 Izzat et al.
2005/0041736 Al 2/2005 Butler-Smith et al. 2008/0152241 Al 6/2008 Ttoi et al.
2005/0071491 Al 3/2005 Seo 2008/0168133 Al 7/2008 Osborne
2005/0091697 Al 4/2005 Tanaka et al. 2008/0168516 Al 7/2008 Flick et al.
2005/0097213 Al 5/2005 Barrett et al. 2008/0170564 Al 7/2008 Shi et al.
2005/0102371 Al 5/2005 Aksu 2008/0170806 Al 7/2008 Kim
2005/0105371 Al 5/2005 Johnson et al. 2008/0172430 Al 7/2008 Thorstensen
2005/0123058 Al 6/2005 Greenbaum et al. 2008/0172712 Al 7/2008 Munetsugu
2005/0138286 Al 6/2005 Franklin et al. 2008/0181296 Al 7/2008 Tian et al.
2005/0160272 Al 7/2005 Teppler 2008/0189419 Al 8/2008 Girle et al.
2005/0160347 Al 7/2005 Kim et al. 2008/0192818 Al 8/2008 DiPietro et al.
2005/0163468 Al 7/2005 Takahashi et al. 2008/0215317 Al 9/2008 Fejzo
2005/0169379 Al 2005 Shin et al. 2008/0222302 Al 9/2008 Nguyen et al.
2005/0180415 Al 82005 Cheung et al. 2008/0232357 Al 9/2008 Chen
2005/0193309 Al 9/2005 Grilli et al. 2008/0243918 Al 10/2008 Holtman
2005/0195752 Al 9/2005 Amin et al. 2008/0256418 Al 10/2008 Luby et al.
2005/0195899 Al 9/2005 Han 2008/0281943 Al 11/2008 Shapiro
2005/0195900 Al 9/2005 Han 2008/0285556 Al 11/2008 Park et al.
2005/0207392 Al 9/2005 Sivalingham et al. 2008/0303893 Al 12/2008 Kim et al.
2005/0216472 Al 9/2005 Leon et al. 2008/0303896 Al 12/2008 Lipton et al.
2005/0216951 Al 9/2005 Maclnnis 2008/0309525 Al 12/2008 Shokrollahi et al.
2005/0254526 A1 11/2005 Wang et al. 2008/0313191 Al 12/2008 Bouazizi
2005/0254575 Al 11/2005 Hannuksela et al. 2009/0003439 Al 1/2009 Wang et al.
2006/0015568 Al 1/2006 Walsh et al. 2009/0019229 Al 1/2009 Morrow et al.
2006/0020796 Al 1/2006 Aura et al. 2009/0031199 Al 1/2009 Luby et al.
2006/0031738 Al 2/2006 Fay et al. 2009/0043906 Al 2/2009 Hurst et al.
2006/0034308 Al 2/2006 Kanaya et al. 2009/0055705 Al 2/2009 Gao
2006/0037057 Al 2/2006 Xu 2009/0067551 Al 3/2009 Chen et al.
2006/0045180 Al 3/2006 Ghanbari et al. 2009/0083806 Al 3/2009 Barrett ot al.
2006/0093634 Al 5/2006 Lutz et al. 2009/0089445 Al 4/2009 Deshpande
2006/0107174 Al 5/2006 Heise 2009/0092138 Al 4/2009 Joo et al.
2006/0109805 Al 5/2006 Malamal Vadakital et al. 2009/0100496 Al 4/2009 Bechtolsheim et al.
2006/0120464 Al 6/2006 Hannuksela 2009/0103523 Al 4/2009 Katis et al.
2006/0193524 Al 8/2006 Tarumoto et al. 2009/0106356 Al 4/2009 Brase et al.
2006/0212444 Al 9/2006 Handman et al. 2009/0125636 Al 52009 Li et al.
2006/0212782 Al 9/2006 Li 2009/0150557 Al 6/2009 Wormley et al.
2006/0229075 Al 10/2006 Kim et al. 2009/0158114 Al 6/2009 Shokrollahi
2006/0244824 Al 11/2006 Debey 2009/0164653 Al 6/2009 Mandyam et al.
2006/0244865 Al 11/2006 Simon 2009/0189792 Al 7/2009 Shokrollahi et al.
2006/0248195 Al 11/2006 Toumura et al. 2009/0195640 Al 8/2009 Kim et al.
2006/0256851 Al 11/2006 Wang et al. 2009/0201990 Al 8/2009 Leprovost et al.
2006/0262856 Al 11/2006 Wu et al. 2009/0204877 Al 8/2009 Betts
2006/0279437 Al 12/2006 Luby et al. 2009/0210547 Al 8/2009 Lassen et al.
2007/0002953 Al 1/2007 Kusunoki 2009/0222873 Al 9/2009 Einarsson
2007/0006274 Al 1/2007 TPaila et al. 2009/0248697 Al 10/2009 Richardson et al.
2007/0016594 Al 1/2007 Visharam et al. 2009/0257508 Al 10/2009 Aggarwal et al.
2007/0022215 Al 1/2007 Singer et al. 2009/0287841 Al 112009 Chapweske et al.
2007/0028099 Al 2/2007 Entin et al. 2009/0297123 Al 12/2009 Virdi et al.
2007/0078876 Al 4/2007 Hayashi et al. 2009/0300203 Al 12/2009 Virdi et al.
2007/0081562 Al 4/2007 Ma 2009/0300204 Al 12/2009 Zhang et al.
2007/0081586 Al 4/2007 Raveendran et al. 2009/0307565 Al 12/2009 Luby et al.
2007/0110074 Al 5/2007 Bradley et al. 2009/0319563 Al ~ 12/2009 Schnell
2007/0127576 Al 6/2007 Henocq et al. 2009/0328228 Al* 12/2009 Schnellcc.ocoevenn. 726/26
2007/0134005 Al 6/2007 Myong et al. 2010/0011061 Al 1/2010 Hudson et al.
2007/0140369 Al 6/2007 Limberg et al. 2010/0011117 Al 1/2010 Hristodorescu et al.
2007/0157267 Al 7/2007 Lopez-Estrada 2010/0011274 Al 1/2010 Stockhammer et al.
2007/0162568 Al* 7/2007 Gupta et al. .ccccooerrersern, 709/219 2010/0020871 Al 1/2010 Hannuksela et al.
2007/0162611 AL* 7/2007 Yu et al. woeeeeooon 709/232 2010/0023525 Al 1/2010 Westerlund et al.
2007/0176800 Al 8/2007 Rijavec 2010/0046906 Al 2/2010 Kanamori et al.
2007/0177811 Al 8/2007 Yang 2010/0049865 Al 2/2010 Hannuksela et al.
2007/0185973 Al 8/2007 Wayda et al. 2010/0061444 Al 3/2010 Wilkins et al.
2007/0195894 Al 8/2007 Shokrollahi et al. 2010/0067495 Al 3/2010 Lee et al.
2007/0200949 Al 8/2007 Walker et al. 2010/0080290 Al 4/2010 Mehrotra
2007/0201549 Al 8/2007 Hannuksela et al. 2010/0103001 Al 4/2010 Shokrollahi et al.
2007/0204196 Al 8/2007 Watson et al. 2010/0131671 Al 5/2010 Kohli et al.
2007/0230568 Al 10/2007 Eleftheriadis et al. 2010/0153578 Al 6/2010 Van Gassel et al.
2007/0233784 Al 10/2007 Orourke et al. 2010/0165077 Al 7/2010 Yin et al.
2007/0255844 Al 11/2007 Shen et al. 2010/0174823 Al 7/2010 Huang
2007/0277209 Al 11/2007 Yousef 2010/0189131 Al 7/2010 Branam et al.

US 9,432,433 B2

Page 5
(56) References Cited EP 0986908 Al 3/2000
EP 1024672 Al 8/2000
U.S. PATENT DOCUMENTS EP 1051027 A1 11/2000
EP 1124344 A1 8/2001
2010/0198982 Al 8/2010 Fernandez EP 1298931 A2 4/2003
2010/0211690 Al 82010 Pakzad et al. EP 1406452 A2 4/2004
2010/0223533 Al 9/2010 Stockhammer et al. EP 1455504 A2 9/2004
2010/0235472 Al 9/2010 Sood et al. EP 1468497 Al 10/2004
2010/0235528 Al* 9/2010 Bocharov et al. 709/231 EP 1501318 Al 1/2005
2010/0257051 Al 10/2010 Fernandez EP 1670256 A2 6/2006
2010/0318632 Al 12/2010 Yoo et al. EP 1755248 Al 2/2007
2011/0019769 Al 1/2011 Shokrollahi et al. EP 2046044 Al 4/2009
2011/0055881 A1* 3/2011 Yuetal. .cocoovoeverorenenn. 725/88 EP 2071827 A2 6/2009
2011/0083144 A1 4/2011 Bocharov et al. EP 1241795 A2 8/2009
2011/0096828 Al 4/2011 Chen et al. EP 2096870 A2 9/2009
2011/0103519 Al 5/2011 Shokrollahi et al. EP 1700410 B1 ~ 4/2010
2011/0119394 Al 5/2011 Wang et al. EP 2323390 A2 5/2011
2011/0119396 Al 5/2011 Kwon et al. TP HO07183873 7/1995
2011/0216541 Al 9/2011 Inoue et al. TP 08186570 7/1996
2011/0231519 Al 9/2011 Luby et al. Ip 8280255 A 11/1996
2011/0231569 Al 9/2011 Luby et al. P 9252253 A 9/1997
2011/0239078 Al 9/2011 Luby et al. P 11041211 A 2/1999
2011/0258510 A1 10/2011 Watson et al. P 11112479 4/1999
2011/0268178 Al 11/2011 Park et al. P 11164270 A 6/1999
2011/0280311 Al 11/2011 Chen et al. TP 2000151426 A 5/2000
2011/0280316 Al 11/2011 Chen et al. TP 2000216835 A 8/2000
2011/0299629 Al 12/2011 Luby et al. Ip 2000513164 A 10/2000
2011/0307545 Al 12/2011 Bouazizi TP 2000307435 A 11/2000
2011/0307581 Al 12/2011 Furbeck et al. TP 2000353969 A 12/2000
2012/0013746 Al 1/2012 Chen et al. P 2001036417 2/2001
2012/0016965 Al 1/2012 Chen et al. TP 2001094625 4/2001
2012/0020413 Al 1/2012 Chen et al. TP 2001223655 A 8/2001
2012/0023249 Al 1/2012 Chen et al. P 2001251287 A 9/2001
2012/0023254 Al 1/2012 Park et al. P 2001274776 A 10/2001
2012/0033730 Al 2/2012 Lee Ip 2001274855 A 10/2001
2012/0042050 Al 2/2012 Chen et al. TP 2002073625 A 3/2002
2012/0042089 Al 2/2012 Chen et al. P 2002204219 A 7/2002
2012/0042090 Al 2/2012 Chen et al. TP 2002543705 A 12/2002
2012/0047280 Al 2/2012 Park et al. TP 2003018568 A 1/2003
2012/0099593 Al 4/2012 Luby Ip 2003507985 2/2003
2012/0151302 Al 6/2012 Luby et al. P 2003092564 A 3/2003
2012/0166499 Al 6/2012 Anderson et al. TP 2003510734 A 3/2003
2012/0185530 Al 7/2012 Reza P 2003174489 6/2003
2012/0202535 Al 82012 Chaddha et al. P 2003256321 A 9/2003
2012/0207068 Al 8/2012 Watson et al. TP 2003318975 A 112003
2012/0208580 Al 82012 Luby et al. P 2003319012 11/2003
2012/0210190 Al 82012 Luby et al. Ip 2003333577 A 11/2003
2012/0297410 Al 11/2012 Lohmar et al. TP 2004048704 A 2/2004
2012/0317305 Al 12/2012 Einarsson et al. TP 2004070712 A 3/2004
2013/0002483 Al 1/2013 Rowitch et al. P 2004135013 A 4/2004
2013/0007223 Al 1/2013 Luby et al. P 2004165922 A 6/2004
2013/0067295 Al 3/2013 Luby et al. P 2004172830 A 6/2004
2013/0091251 Al 4/2013 Walker et al. TP 2004516717 A 6/2004
2013/0246643 Al 9/2013 Luby Ip 2004192140 A 7/2004
2013/0254634 Al 9/2013 Luby P 2004193992 A 7/2004
2013/0287023 Al 10/2013 Bims TP 2004529533 A 9/2004
2014/0009578 Al 1/2014 Chen et al. P 2004289621 A 10/2004
2014/0380113 Al 12/2014 Luby P 2004328613 A 11/2004
2015/0039782 Al 2/2015 Major et al. P 2004343701 A 12/2004
2016/0065640 Al 3/2016 Luby et al. Ip 2004348824 A 12/2004
P 2004362099 A 12/2004
P 2005094140 A 4/2005
FOREIGN PATENT DOCUMENTS P 5005136546 A 5/2005
P 2005514828 T 5/2005
gg };‘gég;‘i i 1%88‘5‘ P 2005204170 A 7/2005
N 14577 A 1aoos P 2005223433 A 8/2005
N 1792056 A 3008 P 2005277950 A 10/2005
N 180639 A 22006 P 2006503463 A 1/2006
N 1819661 A 85006 P 2006033763 A 2/2006
N 1868157 A 112006 P 2006505177 A 2/2006
N 1902865 A 112007 P 2006506926 A 2/2006
N 101390399 A 32000 P 2006074335 A 3/2006
CN 101729857 A 62010 P 2006074421 A 3/2006
EP 0669587 A2 8/1995 P 2006115104 A 4/2006
EP 0701371 Al 3/1996 P 3809957 6/2006
FP 0784401 A2 7/1997 JP 2006174032 A 6/2006
EP 0853433 Al 7/1998 P 2006174045 A 6/2006
EP 0854650 A2 7/1998 P 2006186419 A 7/2006
EP 0903955 A1 3/1999 P 2006519517 A 8/2006

US 9,432,433 B2

Page 6

(56) References Cited WO WO02004019521 Al 3/2004

WO 2004036824 Al 4/2004

FOREIGN PATENT DOCUMENTS WO W02004030273 Al 4/2004

WO WO02004034589 A2 4/2004
JP 2006287422 A 10/2006 WO WO02004040831 Al 5/2004
P 2006319743 A 11/2006 WO 2004047019 A2 6/2004
P 2007013675 A 1/2007 WO W02004047455 Al 6/2004
JP 2007036666 A 2/2007 WO 2004088988 Al 10/2004
JP 2007089137 A 4/2007 WO 2004109538 Al 12/2004
P 3976163 6/2007 WO WO02005036753 A2 4/2005
JP 2007158592 A 6/2007 WO WO02005041421 Al 5/2005
JP 2007174170 A 7/2007 WO WO02005078982 Al 8/2005
P 2007520961 A 7/2007 wo 2005107123 11/2005
P 2007228205 A 9/2007 WO 2005109224 A2 11/2005
JP 2007535881 A 12/2007 WO WO02005112250 A2 11/2005
JP 2008011404 A 1/2008 WO 2006013459 Al 2/2006
P 2008016907 A 1/2008 WO WO02006020826 A2 2/2006
JP 2008508761 A 3/2008 WO WO0-2006036276 4/2006
JP 2008508762 A 3/2008 WO 2006057938 A2 6/2006
P 2008283232 A 11/2008 Wwo 2006060036 Al 6/2006
JP 2008283571 A 11/2008 WO WO02006084503 Al 8/2006
JP 2008543142 A 11/2008 WO WO0-2006116102 A2 11/2006
P 2008546361 A 12/2008 WO 2006135878 A2 12/2006
P 2009027598 A 2/2009 WO WO02007042916 4/2007
JP 2009522921 A 6/2009 WO 2007078252 A2 7/2007
JP 2009522922 A 6/2009 WO 2007078253 A2 7/2007
P 2009171558 A 7/2009 WO 2007098397 A2 8/2007
JP 2009527949 A 7/2009 WO 2007098480 Al 8/2007
JP 2009277182 A 11/2009 WO WO02007090834 A2 8/2007
P 2009544991 A 12/2009 Wwo 2008011549 A2 1/2008
P 2010539832 A 12/2010 WO 2008023328 A3 4/2008
JP 2008502212 A 1/2011 WO WO02008054100 Al 5/2008
P 2001189665 A 2/2011 WO 2008086313 Al 7/2008
P 2011087103 A 4/2011 WO WO02008085013 Al 7/2008
JP 4773356 B2 9/2011 WO 2008131023 Al 10/2008
JP 4971144 B2 72012 WO 2008144004 A1 11/2008
P 2013510453 A 3/2013 WO WO02008148708 Al 12/2008
KR 1020030071815 9/2003 WO WO2008156390 Al 12/2008
KR 1020030074386 A 9/2003 WO 2009065526 Al 5/2009
KR 20040107152 A 12/2004 Wwo 2009137705 A2 11/2009
KR 20040107401 A 12/2004 WO WO 2009143741 A1 * 12/2009 ... HO04N 7/24
KR 20050009376 A 1/2005 WO 2010027397 A2 3/2010
KR 100809086 B1 3/2008 WO 2010078281 A2 7/2010
KR 20080083299 A 9/2008 WO WO02010085361 A2 7/2010
KR 20090098919 A 9/2009 WO WO02010088420 Al 8/2010
KR 20100028156 A 3/2010 WO WO02010120804 Al 10/2010
RU 99117925 A 7/2001 WO 2011038034 Al 3/2011
RU 2189629 C2 9/2002 WO 2011059286 A2 5/2011
RU 2265960 C2 12/2005 WO 2011070552 Al 6/2011
RU 2290768 C1 12/2006 WO 2011102792 Al 8/2011
RU 2297663 C2 4/2007 WO 2012021540 2/2012
RU 2312390 C2 12/2007 WO WO0-2012109614 Al 8/2012
W DA e OTHER PUBLICATIONS
™wW 1354908 12/2011
™ 1355168 12/2011 Bross, et al., “High efficiency video coding (HEVC) text specifi-
WO W09634463 Al 10/1996 cation draft 7,” Joint Collaborative Team on Video Coding (JCT-
%8 Wogg(s)gé% ﬁi 1%; 1997 VC) of ITU-T SG16 WP3 and ISO/IEC JTCI/SC29/WG11 9th
WO 0832256 Al 7/1332 Meeting: Geneva, CH, Apr. 27-May 7, 2012, JCTVC-11003__d21,
WO W09832231 7/1998 pp. 290.
WO WO00014921 Al 3/2000 Bross, et al., “High efficiency video coding (HEVC) text specifi-
WO WO00018017 3/2000 cation draft 8,” Joint Collaborative Team on Video Coding (JCT-
WO WO0052600 Al 9/2000 VC) of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11 10th
WO WO0120786 A1 3/2001 Meeting: Stockholm, SE, Jul. 11-20, 2012, JCTVC-J1003_d7, pp.
WO WO0157667 Al 8/2001 261.
wo WOO0158130 A2 8/2001 Bross et al., “WD4: Working Draft 4 of High-Efficiency Video
w O Bies a2 bl Coding,” JCTVC-F803_d2, (JCT-VC) of ITU-T SG16 WP3 and
WO 0249343 Al 6/2002 ISO/IEC JTC1/SC29/WGI1 Joint Collaborative Team on Video
WO W002047391 6/2002 Coding, 6th Meeting, Torino, IT, Jul. 14-22, 2011, 226 pages.
WO 02063461 Al 8/2002 Bross et al., “WDS5: Working Draft 5 of High-Efficiency Video
WO 03046742 Al 6/2003 Coding,” JCTVC-G1103_d2, (JCT-VC) of ITU-T SG16 WP3 and
WO WO003056703 7/2003 ISO/IEC JTC1/SC29/WG11 Joint Collaborative Team on Video
WO 03103212 A2 12/2003 Coding, 7th Meeting, Geneva, Switzerland (Nov. 2011), 214 pages.
WO 03105484 Al 12/2003 European Search Report—FEP10013235—Search Authority—The
WO WO03105350 12/2003 Hague—Aug. 20, 2012.
WO W02004008735 A2 1/2004 ITU-T H.264, Series H: Audiovisual and Multimedia Systems,

WO W02004015948 Al 2/2004 Infrastructure of audiovisual services—Coding of moving video,

US 9,432,433 B2
Page 7

(56) References Cited
OTHER PUBLICATIONS

Advanced video coding for generic audiovisual services, The Inter-
national Telecommunication Union. Jun. 2011, 674 pp.

Jiang., File Format for Scalable Video Coding, PowerPoint Presen-
tation for CMPT 820, Summer 2008.

Pantos, “HTTP Live Streaming draft-pantos-http-live-streaming-
027, Informational, Internet-Draft, Intended status: Informational,
Expires: Apr. 8, 2010, http://tools.ietf.org/html/draft-pantos-http-
live-streaming-02, pp. 1-20, Oct. 5, 2009.

Thomas Wiegand et al.,“WD1: Working Draft 1 of High-Efficiency
Video Coding”, JCTVC-C403, Joint Collaborative Team on Video
Coding (JCT-VC), of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/
WGT11, 3rd Meeting: Guangzhou, CN, Oct. 7-15, 2010.

Wiegand et al., “WD3: Working Draft 3 of High-Efficiency Video
Coding,” Document JCTVC-E603, 5th Meeting: Geneva, CH, Mar.
16-23, 2011, 193 pp.

Wiegand T. et al., “WD2: Working Draft 2 of High-Efficiency Video
Coding”, No. JCTVC-D503, Jan. 28, 2011, XP002679642,
Retrieved from the Internet: URL: http://witp3.itu.int/av-arch/jctve-
site/2011_01_D_ Daegu/ [retrieved on Jul. 11, 2012].
Yamanouchi N., et al., “Internet Multimedia Transmission with
Packet by Using Forward Error Correction,” Proceedinggs of DPS
Workshop, The Information Processing Society of Japan, Dec. 6,
2000, vol. 2000, No. 15, pp. 145-150.

3GPP TS 26.234 V9.1.0 ,“3rd Generation Partnership Project;
Technical Specification Group Services and System Aspects; Trans-
parent end-to-end Packet-switched Streaming Service (PSS); Pro-
tocols and codecs (Release 9)”, Dec. 2009, 179 pages.

3GPP TS 26.244 V9.1.0, 3rd Generation Partnership Project; Tech-
nical Specification Group Services and System Aspects; Transpar-
ent end-to-end packet switched streaming service (PSS); 3GPP file
format (3GP), (Release 9), Mar. 2010, 55 pp.

3GPP TS 26.247, v1.5.0, 3rd Generation Partnership Project; Tech-
nical Specification Group Services and System Aspects Transparent
end-to-end Packet-switched Streaming Service (PSS); Progressive
Download and Dynamic Adaptive Streaming over HTTP (3GP-
DASH) (Release 10), 2010, 91 pages.

3rd Generation Partnership Project, Technical Specification Group
Services and System Aspects Transparent end-to-end packet
switched streaming service (PSS), 3GPP file format (3GP) (Release
9), 3GPP Standard, 3GPP TS 26.244, 3RD Generation Partnership
Project (3GPP), Mobile Competence Centre , 650, Route Des
Lucioles , F-06921 Sophia-Antipolis Cedex , France, No. V8.1.0,
Jun. 1, 2009, pp. 1-52, XP050370199.

3rd Generation Partnership Project; Technical Specification Group
Services and System Aspects; Transparent end-to-end packet
switched streaming service (PSS); 3GPP file format (3GP) (Release
9), 3GPP Standard; 3GPP TS 26.244, 3RD Generation Partnership
Project (3GPP), Mobile Competence Centre; 650, Route Des
Lucioles; F-06921 Sophia-Antipolis Cedex; France, No. V9.2.0,
Jun. 9, 2010, pp. 1-55, XP050441544, [retrieved on Jun. 9, 2010].
Afzal, et al., “Video Streaming over MBMS: A System Design
Approach”, Journal of Multimedia, vol. 1, No. 5, Aug. 2006, pp.
25-35.

Aggarwal, C. et al.: “A Permutation-Based Pyramid Broadcasting
Scheme for Video-on-Demand Systems,” Proc. IEEE Int’l Conf. on
Multimedia Systems, Hiroshima, Japan (Jun. 1996).

Aggarwal, C. et al.: “On Optimal Batching Policies for Video-on-
Demand Storage Servers,” Multimedia Systems, vol. 4, No. 4, pp.
253-258 (1996).

Albanese, A., et al., “Priority Encoding Transmission”, IEEE Trans-
actions on Information Theory, vol. 42, No. 6, pp. 1-22, (Nov.
1996).

Alex Zambelli,“IIS Smooth Streaming Technical Overview”,
Microsoft Mar. 25, 2009, XP002620446, Retrieved from the Inter-
net: URL :http://www.microsoft.com/downloads/en/details.
aspx"FamilyID=03d22583-3ed6-44da-8464-blb4bS5ca7520,
[retrieved on Jan. 21, 2011].

Aljoscha Smolic et al., “Development of a New MPEG Standard for
Advanced 3D Video Applications”, IEEE International Symposium

on Image and Signal Processing and Analysis, Sep. 16, 2009, pp.
400-407, XP031552049, ISBN: 978-953-184-135-1.

Almeroth, et al., “The use of multicast delivery to provide a scalable
and interactive video-on-demand service”, IEEE Journal on
Selected Areas in Communication, 14(6): 1110-1122, (1996).
Alon, et al.: “Linear Time Erasure Codes with Nearly Optimal
Recovery,” Proceedings of the Annual Symposium on Foundations
of Computer Science, US, Los Alamitos, IEEE Comp. Soc. Press,
Vol. Symp. 36, pp. 512-516 (Oct. 23, 1995) XP000557871.

Amin Shokrollahi: “LDPC Codes: An Introduction” Internet Cita-
tion Apr. 2, 2003, XP002360065 Retrieved from the Internet:
URL : http ://'www . ipm. ac . ir/IPM/homepage/Amin 2. pdf
[retrieved on Dec. 19, 2005].

Amon P. et al., “File Format for Scalable Video Coding”, IEEE
Transactions on Circuits and Systems for Video Technology, IEEE
Service Center, Piscataway, NJ, US, vol. 17, No. 9, Sep. 1, 2007, pp.
1174-1185, XP011193013, ISSN: 1051-8215, DOI1:10.1109/
TCSVT.2007.905521.

Anonymous: [Gruneberg, K., Narasimhan, S. and Chen, Y.,
editors]“Text of ISO/IEC 13818-1:2007/PDAM 6 MVC operation
point descriptor”, 90 MPEG Meeting; Oct. 26, 2009-Oct. 30, 2009;
Xian; (Motion Picture Expertgroup or ISO/IEC JTC1/SC29/
WG11l), No. N10942, Nov. 19, 2009, XP030017441.
Anonymous: “Text of ISO/IEC 14496-12 3rd Edition”, 83 MPEG
Meeting; Jan. 14, 2008-Jan. 18, 2008; Antalya; (Motion
Pictureexpert Group or ISO/IEC JTC1/SC29/WG11), No. N9678,
Apr. 22, 2008, XP030016172.

Anonymous: “Text of ISO/IEC 14496-12:2008/PDAM 2 Sub-track
selection & switching”, 91. Mpeg Meeting; Jan. 18, 2010-Jan. 22,
2010; Kyoto; (Motion Picture Expertgroup or ISO/IEC JTC1/SC29/
WGl1), No. N11137, Jan. 22, 2010, XP030017634, ISSN: 0000-
0030.

Anonymous: “Text of ISO/IEC 14496-15 2nd edition”, 91 MPEG
Meeting; Jan. 18, 2010-Jan. 22, 2010; Kyoto; (Motion Picture
Expertgroup or ISO/IEC JTC1/SC29/WGI11) No. N11139, Jan. 22,
2010, XP030017636.

Apple Inc., “On the time-stamps in the segment-inbox for
httpstreaming (26.244, R9)”, TSG-SA4#58 meeting, Vancouver,
Canada, Apr. 2010, p. 5.

Bar-Noy, et al., “Competitive on-line stream merging algorithms for
media-on-demand”, Draft (Jul. 2000), pp. 1-34.

Bar-Noy et al. “Efficient algorithms for optimal stream merging for
media-on-demand,” Draft (Aug. 2000), pp. 1-43.

Bigloo, A. et al.: “A Robust Rate-Adaptive Hybrid ARQ Scheme
and Frequency Hopping for Multiple-Access Communication Sys-
tems,” IEEE Journal on Selected Areas in Communications, US,
IEEE Inc, New York (Jun. 1, 1994) pp. 889-893, XP000464977.
Bitner, JR., et al.: “Efficient Generation of the Binary Reflected
Gray code and Its Applications,” Communications of the ACM, pp.
517-521, vol. 19 (9), 1976.

Blomer, et al., “An XOR-Based Erasure-Resilient Coding Scheme,”
ICSI Technical Report No. TR-95-048 (1995) [avail. At ftp:/ftp.
icsi.berkeley.edu/pub/techreports/1995/tr-95-048.pdf].

Byers, JJW. et al.: “A Digital Fountain Approach to Reliable
Distribution of Bulk Data,” Computer Communication Review,
Association for Computing Machinery. New York, US, vol. 28, No.
4 (Oct. 1998) pp. 56-67 XP000914424 ISSN:0146-4833.

Byers, J.W. et al.: “Accessing multiple mirror sites in parallel: using
Tornado codes to speed up downloads,” 1999, Eighteenth Annual
Joint Conference of the IEEE Comupter and Communications
Socities, pp. 275-283, Mar. 21, 1999, XP000868811.

Charles Lee L.H, “Error-Control Block Codes for Communications
Engineers”, 2000, Artech House, XP002642221 pp. 39-45.

Chen, et al., U.S. Patent Application titled “Frame Packing for
Asymmetric Stereo Video”, filed Feb. 25, 2011.

Chen, et al., U.S. Patent Application titled “One-Stream Coding for
Asymmetric Stereo Video”, filed Feb. 25, 2011.

Chen Ying et al., “Coding techniques in Multiview Video Coding
and Joint Multiview Video Model”, Picture Coding Symposium,
2009, PCS 2009, IEEE, Piscataway, NJ, USA, May 6, 2009, pp. 1-4,
XP031491747, ISBN: 978-1-4244-4593-6.

Choi S: “Temporally enhanced erasure codes for reliable commu-
nication protocols” Computer Networks, Elsevier Science Publish-

US 9,432,433 B2
Page 8

(56) References Cited
OTHER PUBLICATIONS

ers B.V., Amsterdam, NL, vol . 38, No. 6, Apr. 22, 2002, pp.
713-730, XP004345778, ISSN:1389-1286, DO1:10.1016/S1389-
1286(01)00280-8.

Clark G.C., et al., “Error Correction Coding for Digital Communi-
cations, System Applications,” Error Correction Coding for Digital
Communications, New York, Plenum Press, US, Jan. 1, 1981, pp.
339-341.

D. Gozalvez et,al. “AL-FEC for Improved Mobile Reception of
MPEG-2 DVB-Transport Streams” Hindawi Publishing Corpora-
tion, International Journal of Digital Multimedia Broadcasting vol.
2009, Dec. 31, 2009, pp. 1-10, XP002582035 Retrieved from the
Internet: URL:http://www.hindawi.com/journals/ijdmb/2009/
614178 html>[retrieved on May 12, 2010].

Dan, A. et al.: “Scheduling Policies for an On-Demand Video Server
with Batching,” Proc. ACM Multimedia, pp. 15-23 (Oct. 1998).
Davey, M.C. et al.: “Low Density Parity Check Codes over GF(q)”
IEEE Communications Letters, vol. 2, No. 6 pp. 165-167 (1998).
David Singer, et al., “ISO/IEC 14496-15/FDIS, International Orga-
nization for Standardization Organization Internationale De Nor-
malization ISO/IEC JTC1/SC29/WG11 Coding of Moving Pictures
and Audio”, ISO/IEC 2003, Aug. 11, 2003, pp. 1-34.

Digital Fountain: “Specification Text for Raptor Forward Error
Correction,” TDOC S4-050249 of 3GPP TSG SA WG 4 Meeting
#34 [Online](Feb. 25, 2005) pp. 1-23, XP002425167, Retrieved
from the Internet: URL:http://www.3gpp.org/ftp/tsg sa/WG4__
CODEC/TSGS4__34/Docs.

Digital Fountain: “Raptor code specification for MBMS file down-
load,” 3GPP SA4 PSM AD-HOC #31 (May 21, 2004)
XP002355055 pp. 1-6.

“Digital Video Broadcasting (DVB); Guidelines for the implemen-
tation of DVB-IP Phase 1 specifications; ETSI TS 102 542” ETSI
Standards, LIS, Sophia Antipoliscedex, France, vol. BC, No. V1.2.
1, Apr. 1, 2008, XP014041619 ISSN: 0000-0001 p. 43 p. 66 pp. 70,
71.

DVB-IPI Standard: DVB BlueBook A086r4 (Mar. 2007) Transport
of MPEG 2 Transport Streatm (TS) Based DVB Services over IP
Based Networks, ETSI Technical Specification 102 034 v1.3.1.
Eager, et al. “Minimizing bandwidth requirements for on-demand
data delivery,” Proceedings of the International Workshop on
Advances in Multimedia Information Systems, p. 80-87 (Indian
Wells, CA Oct. 1999).

Eager, et al., “Optimal and efficient merging schedules for video-
on-demand servers”, Proc. ACM Multimedia, vol. 7, pp. 199-202
(1999).

Esaki, et al.: “Reliable IP Multicast Communication Over ATM
Networks Using Forward Error Correction Policy,” IEICE Trans-
actions on Communications, JP, Institute of Electronics Information
and Comm. ENG. Tokyo, vol. E78-V, No. 12, (Dec. 1995), pp.
1622-1637, XP000556183.

Feng, G., Error Correcting Codes over Z2m for Algorithm-Based
Fault-Tolerance, IEEE Transactions on Computers, vol. 43, No. 3,
Mar. 1994, pp. 370-374.

Fernando, et al., “httpstreaming of MPEG Media—Response to
CfP”, 93 MPEG Meeting; Jul. 26, 2010- Jul. 30, 2010; Geneva,
(Motion Picture Expert Group or ISO/IEC JTC1/SCE29/WG11),
No. M17756, Jul. 22, 2010, XP030046346.

Fielding et al., “RFC 2616: Hypertext Transfer Protocol HTTP/1.17,
Internet Citation, Jun. 1999, pp. 165, XP002196143, Retrieved from
the Internet: URL :http://www.rfc-editor-org/ [retrieved on Apr. 15,
2002].

Frojdh, et al., “File format sub-track selection and switching,”
ISO/IEC JTC1/SC29/WGI11 MPEG2009 M16665, London UK.,
Jul. 2009, 14 pp.

Gao, L. et al.: “Efficient Schemes for Broadcasting Popular Videos,”
Proc. Inter. Workshop on Network and Operating System Support
for Digital Audio and Video, pp. 1-13 (1998).

Gasiba, Tiago et al., “System Design and Advanced Receiver
Techniques for MBMS Broadcast Services” Proc. 2006 Interna-

tional Conference on Communications (ICC 2006), Jun. 1, 2006, pp.
5444-5450, XP031025781 ISBN: 978-1-4244-0354-7.

Gemmell, et al., “A Scalable Multicast Architecture for One-To-
Many Telepresentations”, Multimedia Computing and Systems,
1998/Proceedings. IEEE International Conference on Austin, TX,
USA Jun. 28-Jul. 1, 1998, Los Alamitos, CA USA, IEEE Comput.
Soc, US, Jun. 28, 1998, pp. 128-139, XP010291559.

Goyal: “Multiple Description Coding: Compression Meets the
Network,” In Signal Processing Magazine, IEEE, vol. 18., Issue 5
(Sep. 2001) pp. 74-93 URL :http://www.rle.mit.edu/stir/documents/
Goyal__SigProcMag2001_MD .pdf [Nov. 4, 2007].

Gozalvez D et, al: “Mobile reception of DVB-T services by means
of AL-FEC protection” Proc. IEEE Intern. Symposium on Broad-
band Multimedia Systems and Broadcasting (BMSB °09), IEEE,
Piscataway, NJ, USA, May 13, 2009, pp. 1-5, XP031480155 ISBN:
978-1-4244-2590-7.

Grineberg, et al., “Deliverable D3.2 MVC/SVC storage format” Jan.
29, 2009, XP002599508 Retrieved from the Internet: URL:http://
www.ist-sea.cu/Public/SEA__D3.2_ HHI FF_20090129.pdf
[retrieved on Sep. 1, 2010] paragraph [02.3].

Hagenauer, J. : “Soft is better than hard” Communications, Coding
and Cryptology, Kluwer Publication May 1994, XP002606615
Retrieved from the Internet : URL: http://www. Int . ei .turn.
de/veroeffentlic hungen/1994/ccc94h. pdf [retrieved on Oct. 25,
2010].

He Wenge et al., “Asymmetric Stereoscopic Video Encoding Algo-
rithm Based on Joint Compensation Prediction”, IEEE International
Conference on Communications and Mobile Computing, Jan. 6,
2009, pp. 191-194, XP031434775, ISBN: 978-0-7695-3501-2.
Hershey, et al., “Random Parity Coding (RPC)”, 1996 IEEE Inter-
national Conference on Communications (ICC). Converging Tech-
nologies for Tomorrow’s Applications. Dallas, Jun. 23-27, 1996,
IEEE International Conference on Communications (ICC), New
York, IEEE, US, vol. 1, Jun. 23, 1996, pp. 122-126, XP000625654.
Hitachi Ltd. et al., “High-Definition Multimedia Interface,” Speci-
fication Version 1.4, Jun. 5, 2009, 425 pp.

Hua, et al., “Skyscraper broadcasting: A new broadcsting system for
metropolitan video-on-demand systems”, Proc. ACM SIGCOMM,
pp. 89-100 (Cannes, France, 1997).

Ian Trow, “Is 3D Event Coverage Using Existing Broadcast Infra-
structure Technically Possible”, International Broadcasting Confer-
ence, Sep. 9, 2009-Sep. 13, 2009, XP030081671, pp. 4-5, “3D
transmission over broadcast infrastructure” pp. 7-8, “Screen signal-
ing”—Conclusions on 3D systems.

IETF RFC 2733: Rosenberg, J. et al. “An RTP Payload Format for
Generic Forward Error Correction,” Network Working Group, RFC
2733 (Dec. 1999).

Information Technology —Generic Coding of Moving Pictures and
Audio: Systems, Amendment 4: Transport of Multiview Video over
ITU-T Rec H.222.0 | ISO/IEC 13818-1 “Text of ISO/IEC 13818-
1:2007/FPDAM 4—Transport of Multiview Video over ITU-T Rec
H.222.0 | ISO/IEC 13818-1,” Lausanne, Switzerland, 2009, 21 pp.
International Search Report and Written Opinion—PCT/US2010/
049842, ISA/EPO—IJun. 28, 2011.

International Search Report and Written Opinion—PCT/US2011/
044745—ISA/EPO—Dec. 21, 2011.

International Standard ISO/IEC 13818-1:2000(E), “Information
Technology—Generic Coding of Moving Pictures and Associated
Audio Information: Systems,” Second edition, Dec. 1, 2000, pp.
1-174.

International Standard ISO/IEC 14496-12, Information Technol-
ogy—Coding of audio-visual objects—Part 12: ISO base media file
format, Third Edition, Oct. 15, 2008, 120 pp.

International Telecommunication Union, “ITU-T H.264, Series H:
Audiovisual and Multimedia Systems, Infrastructure of audiovisual
services—Coding of moving video, Advanced video coding for
generic audiovisual services,” Mar. 2010, 669 pp.

ISO/IEC JTC 1/SC 29, ISO/IEC FCD 23001-6, Information tech-
nology—MPEG systems technologies—Part 6: Dynamic adaptive
streaming over HTTP (DASH), Jan. 28, 2011.

US 9,432,433 B2
Page 9

(56) References Cited
OTHER PUBLICATIONS

ISO/IEC JTC1/SC29/WG11: “Requirements on HTTP Streaming of
MPEG Media”, 92. MPEG Meeting; Apr. 19, 2010-Apr. 23, 2010,
Dresden; No. N11340, May 14, 2010, XP030017837, ISSN: 0000-
0029.

Jin Li, “The Efficient Implementation of Reed-Solomon High Rate
Erasure Resilient Codes” Proc. 2005 IEEE International Conference
on Acoustics, Speech, and Signal Processing, Philadelphia, PA,
USA, IEEE, Piscataway, NJ, vol. 3, Mar. 18, 2005, pp. 1097-1100,
XP010792442, DOI: 10.1109/ICASSP.2005.1415905 ISBN: 978-0-
7803-8874-1.

“Joint Draft 8.0 on Multiview Video Coding”, 28th JVT meeting,
Hannover, Germany, Document: JVT-AB204 (rev.l), Jul. 2008.
available from http:// witp3. itu.int/av-arch/jvt-site/2008_ 07_ Han-
nover/JVT-AB204.

Juhn, L. et al.: “Adaptive Fast Data Broadcasting Scheme for
Video-on-Demand Service,” IEEE Transactions on Broadcasting,
vol. 44, No. 2, pp. 182-185 (Jun. 1998).

Juhn, L. et al.: “Harmonic Broadcasting for Video-on-Demand
Service,” IEEE Transactions on Broadcasting, vol. 43, No. 3, pp.
268-271 (Sep. 1997).

Kallel, “Complementary Punctured Convolutional (CPC) Codes
and Their Application”, IEEE Transactions on Communications,
IEEE Inc., New York, US, vol. 43, No. 6, Jun. 1, 1995, pp.
2005-2009.

Kimata H et al., “Inter-View Prediction With Downsampled Ref-
erence Pictures”, ITU Study Group 16—Video Coding Experts
Group—ISO/IEC MPEG & ITU-T VCEGISO/IEC JTC1/SC29/
WGI11 and ITU-T SG16 Q6), No. JVI-WO079, Apr. 19, 2007,
XP030007039.

Kozamernik F: “Media streaming over the Internet”, Internet Cita-
tion, Oct. 2002, XP002266291, Retrieved from the Internet: URL:
http://www.ebu.ch/trev_ 292-kozamerni k. pdf [retrieved on Jan. 8,
2004] section “Video codecs for scalable streaming”.

Lee L., et al.,“VLSI implementation for low density parity check
decoder”, Proceedings of the 8th IEEE International Conference on
Elecctronics, Circuits and Systems, 2001. ICECS 2001, Sep. 2,
2001, vol. 3, pp. 1223-1226.

Lin, S. et al.: “Error Control Coding-Fundamentals and Applica-
tions,” 1983, Englewood Cliffs, pp. 288, XP002305226.

Luby Digital Fountain A Shokrollahi Epfi M Watson Digital Foun-
tain T Stockhammer Nomor Research M: “Raptor Forward Error
Correction Scheme for Object Delivery; rfc5053.txt”, IETF Stan-
dard, Internet Engineering Task Force, IETF, CH, Oct. 1, 2007,
XP015055125, ISSN: 0000-0003.

Luby, et al., “Analysis of Low Density Codes and Improved
Designs Using Irregular Graphs”, 1998, Proceedings of the 30th
Annual ACM Symposium on Theory of Computing, May 23, 1998,
pp. 249-258, XP000970907.

Luby, et al.: “Analysis of Low Density Codes and Improved
Designs Using Irregular Graphs,” International Computer Science
Institute Technical Report TR-97-045 (Nov. 1997) [available at
ftp://ftp.icsi.berkeley.edu/pub/techreports/1997/tr-97-045 .pdf].
Luby, et al., “FLUTE—File Delivery over Unidirectional Trans-
port”, IETF RFC 3926, pp. 1-35, (Oct. 2004).

Luby et al., “Improved Low-Density Parity-Check Codes Using
Irregular Graphs and Belief Propagation”, Information Theory,
1998. Proceedings. 1998 IEEE International Symposium on Cam-
bridge, MA, USA Aug. 16-21, 1998, pp. 1-9, New York, NY, USA,
IEEE, US August 16, 199.

Luby et, al. “Layered Coding Transport (LCT) Building Block”,
IETF RFC 5651, pp. 1-42, (Oct. 2009).

Luby, M. et al.: “Efficient Erasure Correction Codes,” 2001, IEEE
Transactions on Information Theory, Vo. 47, No. 2, pp. 569-584,
XP002305225.

Luby, M., et, al. “Forward Error Correction (FEC) Building Block”,
IETF RFC 5052, pp. 1-31, (Aug. 2007).

Luby M et al: “IPTV Systems, Standards and Architectures: Part
II—Application Layer FEC in IPTV Services” IEEE Communica-
tions Magazine, IEEE Service Center, Piscataway, US LNKDDOI:

10.1109/MCOM.2008.4511656, vol. 46, No. 5, May 1, 2008, pp.
94-101, XP011226858 ISSN: 0163-6804.

Luby, M. et al.: “Pairwise Independence and Derandomization,”
Foundations and Trends in Theoretical Computer Science, vol. 1,
Issue 4, 2005, Print ISSN 1551-305X, Online ISSN 1551-3068.
Luby, M. et al., “Practical Loss-Resilient Codes: Tornado Codes,”
29th Annual ACM Symposium on Theory of Computing, Vol.
Symp. 29, May 4, 1997, pp. 150-159, XP002271229.

Luby, M., et al.,, “Raptor Forward Error Correction Scheme for
Object Delivery”, IETF RFC5053, pp. 1-46 (Sep. 2007).

Luby, M., et al., “RaptorQ Forward Error Correction Scheme for
Object Delivery”, IETF draft ietf-rmt-bb-fec-raptorq-04, Reliable
Multicast Transport, pp. 1-68, (Aug. 24, 2010).

Luby, M., et al., “Request for Comments: 3453: The Use of Forward
Error Correction (FEC) in Reliable Multicast,” Internet Article,
[Online] Dec. 2002, pp. 1-19.

Luby, Michael G. “Analysis of Random Processes via and-or Tree
Evaluation”, Proceedings of the 9th Annual ACM-SIAM Sympo-
sium on Discrete Algorithms,TR-97-0, 1998, pp. 364-373, (search
date: Jan. 25,2010) URL: <http://portal.acm.prg.citation.
cfm"id=314722>.

Mandelbaum D.M., “An Adaptive-Feedback Coding Scheme Using
Incremental Redundancy”, IEEE Trans on Information Theory, vol.
May 1974, pp. 388-389, XP002628271, the whole document.
Marpe, et al.,, “The H.264/MPEG4 Advanced Video Coding Stan-
dard and its Applications,” Standards Report, IEEE Communica-
tions Magazine, Aug. 2006, pp. 134-143.

Matsuoka H., et al., “Low-Density Parity-Check Code Extensions
Applied for Broadcast-Communication Integrated Content Deliv-
ery”, Research Laboratories, NTT DOCOMO, Inc., 3-6, Hikari-No-
Oka, Yokosuka, Kanagawa, 239-8536, Japan, ITC-SS21, 2010
IEICE, pp. 59-63.

McCanne, et al., “Low-Complexity Video Coding for Receiver-
Driven Layered Multicast”, IEEE Journal on Selected Areas in
Communication IEEE Service Center, Aug. 1, 1997, vol. 15, No. 6,
pp. 983-1001, Piscataway, US, XP011054678, ISSN: 0733-8716.
Mimnaugh, A et, al. “Enabling Mobile Coverage for DVB-T”
Digital Fountain Whitepaper Jan. 29, 2008, pp. 1-9, XP002581808
Retrieved from the Internet: URL:http://www.digitalfountain.com/
ufiles/ library/DVB-T-whitepaper.pdf>[retrieved on May 10, 2010].
Min-Goo Kim: “On systematic punctured convolutional codes”,
IEEE Trans on Communications, vol. 45, No. 2, Feb. 1997,
XP002628272, the whole document, pp. 133-139.

Muller, et al., “A test-bed for the dynamic adaptive streaming over
HTTP featuring session mobility” MMSys 11 Proceedings of the
second annual ACM conference on Multimedia systems, Feb.
23-25, 2011, San Jose, CA, pp. 271-276.

Naguib, Ayman, et al., “Applications of Space-Time Block Codes
and Interference Suppression for High Capacity and High Data Rate
Wireless Systems,” IEEE, 1998, pp. 1803-1810.

Narayanan, et al., “Physical Layer Design for Packet Data Over
IS-136”, Vehicular Technology Conference, 1997, IEEE 47th Phoe-
nix, AZ, USA May 4-7, 1997, New York, NY, USA, IEEE, US May
4, 1997, pp. 1029-1033.

Nokia: “Reed-Solomon Code Specification for. MBMS Download
and Streaming Services”, 3GPP Draft; S4-050265_RS_ SPEC, 3rd
Generation Partnership Project (3GPP), Mobile Competence
Centre ; 650, Route Des Lucioles ; F-06921 Sophia-Antipolis Cedex
; France, vol. SA WG4, no. San Diego, USA; Apr. 15, 2005,
XP050287675, [retrieved on Apr. 15, 2005].

Nokia Corp., “Usage of ‘mfra’ box for Random Access and Seck-
ing,” S4-AHI127, 3GPP TSG-SA4 Ad-Hoc Meeting, Dec. 14-16,
2009, Paris, FR, 2 pp.

Nonnenmacher, et al., “Parity-Based Loss Recovery for Reliable
Multicast Transmission”, IEEE / ACM Transactions on Networking,
IEEE Inc. New York, US, Vol. 6, No. 4, Aug. 1, 1998, pp. 349-361.
Ozden, B. et al.: “A Low-Cost Storage Service for Movie on
Demand Databases,” Proceedings of the 20th Very Large DataBases
(VLDB) Conference, Santiago, Chile (1994).

PA. Chou, A. Mohr, A. Wang, S. Mehrotra, “FEC and Pseudo-ARQ
for Receiver-Driven Layered Multicast of Audio and Video,” pp.
440-449, TEEE Computer Society, Data Compression Conference
(2000).

US 9,432,433 B2
Page 10

(56) References Cited
OTHER PUBLICATIONS

Pantos R et al., “HTTP Live Streaming; draft-pantos-http-live-
streaming-OT.txt”, HTTP Live Streaming; Draft-PantOs-HTTP-
Live-Streaming-01.txt, Internet Engineering Task Force, IETF;
Standardworkingdraft, Internet Society (ISOC) 4, Rue Des Falaises
CH—1205 Geneva, Switzerland, No. 1, Jun. 8, 2009,
XP015062692.

Paris, et al., “A low bandwidth broadcasting protocol for video on
demand”, Proc. International Conference on Computer Communi-
cations and Networks, vol. 7, pp. 690-697 (Oct. 1998).

Paris, et al., “Efficient broadcasting protocols for video on demand”,
International Symposium on Modeling, Analysis and Simulation of
Computer and Telecommunication systems (MASCOTS), vol. 6,
pp. 127-132 (Jul. 1998).

Perkins, et al.: “Survey of Packet Loss Recovery Techniques for
Streaming Audio,” IEEE Network; Sep./Oct. 1998, pp. 40-48.
Petition decision for Petition Under 37 C.F.R. § 1.78 to Accept an
Unintentionally Delayed Priority Claim under 35 U.S.C. § 120 in
U.S. Pat. No. 7,532,132, dated Jul. 21, 2011, 2 pages.

Petition under 37 C.FR. § 1.78 to Accept an Unintentionally
Delayed Priority Claim under 35 U.S.C. § 120 in U.S. Pat. No.
7,532,132, dated May 27, 2011, 2 pages.

Plank J. S., “A Tutorial on Reed-Solomon Coding for Fault-
Tolerance I N Raid-Like Systems”, Software Practice & Experi-
ence, Wiley & Sons, Bognor Regis, GB, vol. 27, No. 9, Sep. 1, 1997,
pp. 995-1012, XP00069594.

Pless and WC Huffman EDS V S: Algebraic geometry codes,
Handbook of Coding Theory, 1998, pp. 871-961, XP002300927.
Pursley, et al.: “Variable-Rate Coding for Meteor-Burst Communi-
cations,” IEEE Transactions on Communications, US, IEEE Inc.
New York (1989) vol. 37, No. 11, pp. 1105-1112 XP000074533.
Pursley, M. et al.: “A Correction and an Addendum for Variable-
Rate Coding for Meteor-Burst Communications,” IEEE Transac-
tions on Communications, vol. 43, No. 12 pp. 2866-2867 (Dec.
1995).

Pyle, et al., “Microsoft http smooth Streaming: Microsoft response
to the Call for Proposal on httpstreaming”, 93 MPEG Meeting; Jul.
26, 2010-Jul. 30, 2010; Geneva, (Motion Picture Expert Group or
ISO/IEC JTC1/SCE29/WGI1), No. M17902, Jul. 22, 2010,
XP030046492.

Qualcomm Europe S A R L: “Baseline Architecture and Definitions
for HTTP Streaming”, 3GPP Draft; S4-090603__HTTP_ STREAM-
ING__ Architecture, 3rd Generation Partnership Project (3GPP),
Mobile Competence Centre; 650, Route Des Lucioles; F-06921
Sophia-Antipolis Cedex; France, no. Kista; Aug. 12, 2009,
XP050356889.

Qualcomm Incorporated: “Use Cases and Examples for Adaptive
httpstreaming”, 3GPP Draft; S4-100408-Usecases-HSD, 3rd Gen-
eration Partnership Project (JGPP), Mobile Competence Centre;
650, Route Des Lucioles; F-06921 Sophia-Antipolis Cedex; France,
vol. SA WG4, no. Prague, Czech Republic; Jun. 21, 2010, Jun. 17,
2010, XP050438085, [retrieved on Jun. 17, 2010].

Rangan, et al., “Designing an On-Demand Multimedia Service,”
IEEE Communication Magazine, vol. 30, pp. 56-64, (Jul. 1992).
Realnetworks Inc, et al., “Format for httpstreaming Media Presen-
tation Description”, 3GPP Draft; S4-100020, 3rd Generation Part-
nership Project (3GPP), Mobile Competence Centre; 650, Route
Des Lucioles; F-06921 Sophia-Antipolis Cedex; France, vol. SA
WG4, no. S t Julians, Malta; Jan. 20, 2010, XP050437753,
[retrieved on Jan. 25, 2010, Jan. 20, 2010].

Research in Motion UK Limited: “An MPD delta file for
httpstreaming”, 3GPP Draft; S4-100453, 3RD Generation Partner-
ship Project (SGPP), Mobile Competence Centre; 650, Route Des
Lucioles; F-06921 Sophia-Antipolis Cedex; France, vol. SA WG4,
no. Prague, Czech Republic; Jun. 21, 2010, Jun. 16, 2010,
XP050438066, [retrieved on Jun. 16, 2010].

Rhyu, et al., “Response to Call for Proposals on httpstreaming of
MPEG Media”, 93 MPEG Meeting; Jul. 26, 2010-Jul. 30, 2010;
Geneva; (Motion Picture Expert Group or ISO/IEC JTC1/SCE29/
WG11) No. M17779, Jul. 26, 2010, XP030046369.

Rizzo, L. “Effective Erasure Codes for Reliable Computer Com-
munication Protocols,” Computer Communication Review, 27 (2)
pp. 24-36 (Apr. 1, 1997), XP000696916.

Roca, V. et al.: “Design, Evaluation and Comparison of Four Large
Block FEC Codecs, LDPC, LDGM, LDGM Staircase and LDGM
Triangle, plus a Reed-Solomon Small Block FEC Codec,” INRIA
Research Report RR-5225 (2004).

Roca, V., et, al. “Low Density Parity Check (LDPC) Staircase and
Triangle Forward Error Correction (FEC) Schemes”, IETF RFC
5170 (Jun. 2008), pp. 1-34.

Rost, S. et al,, “The Cyclone Server Architecture: streamlining
delivery of popular content,” 2002, Computer Communications,
vol. 25, No. 4, pp. 1-10.

Roth, R, et al., “A Construction of Non-Reed-Solomon Type MDS
Codes”, IEEE Transactions of Information Theory, vol. 35, No. 3,
May 1989, pp. 655-657.

Roth, R., “On MDS Codes via Cauchy Matrices”, IEEE Transac-
tions on Information Theory, vol. 35, No. 6, Nov. 1989, pp.
1314-1319.

Schwarz, Heiko et al., “Overview of the Scalable Video Coding
Extension of the H.264/AVC Standard”, IEEE Transactions on
Circuits and Systems for Video Technology, Vol. 17, No. 9, Sep.
2007, pp. 1103-1120.

Seshan, S. et al., “Handoffs in Cellular Wireless Networks: The
Daedalus Implementation and Experience,” Wireless Personal
Communications, NL; Kluwer Academic Publishers, vol. 4, No. 2
(Mar. 1, 1997) pp. 141-162, XP000728589.

Shacham: “Packet Recovery and Error Correction in High-Speed
Wide-Area Networks,” Proceedings of the Military Communica-
tions Conference. (Milcom), US, New York, IEEE, vol. 1, pp.
551-557 (1989) XP000131876.

Shierl T; Gruneberg K; Narasimhan S; Vetro A: “ISO/IEC 13818-
1:2007/FPDAM 4—Information Technology Generic Coding of
Moving Pictures and Audio Systems amendment 4: Transport of
Multiview Video over ITU-T Rec H.222.0 ISO/IEC 13818-1”
ITU-T Rec. H.222.0(May 2006)FPDAM 4, vol. MPEG2009, No.
10572, May 11, 2009, pp. 1-20, XP002605067 p. 11, last two
paragraphs sections 2.6.78 and 2.6.79 table T-1.

Shokrollahi, A.: “Raptor Codes,” Internet Citation [Online] (Jan. 13,
2004) XP002367883, Retrieved from the Internet: URL:http://
www.cs.hyji.ac.il/labs/danss/p2p/resources/raptor.pdf.

Shokrollahi, Amin. “Raptor Codes,” IEEE Transactions on Infor-
mation Theory, Jun. 2006, vol. 52, No. 6, pp. 2551-2567, (search
date: Feb. 1, 2010) URL: <http:/portal.acm.org/citation.
cfm"id=1148681>.

Shokrollahi et al., “Design of Efficient Easure Codes with Differ-
ential Evolution”, IEEE International Symposium on Information
Theory, Jun. 25, 2000, pp. 5-5.

Sincoskie, W. D., “System Architecture for Large Scale Video on
Demand Service,” Computer Network and ISDN Systems, pp.
155-162, (1991).

Stockhammer, “WD 0.1 of 23001-6 Dynamic Adaptive Streaming
over HTTP (DASH)” MPEG-4 Systems, International Organisation
for Standardisation, ISO/IEC JTC1/SC29/WGl1, Coding of Mov-
ing Pictures and Audio, MPEG 2010 Geneva/m11398, Jan. 6, 2011,
16 pp.

Sullivan et al., Document: JVT-AA007, “Editors' Draft Revision to
ITU-T Rec. H.264|ISO/IEC 14496-10 Advanced Video Coding—In
Preparation for ITU-T SG 16 AAP Consent (in integrated form),”
Joint Video Team (JVT) OF ISO/IEC MPEG & ITU-T VCEG
(ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 Q.6), 30th Meeting:
Geneva, CH, Jan. 29-Feb. 3, 2009, pp. 1-683, http://witp3.itu.int/
av-arch/jvt-site/2009__01_ Geneva/TVT-ADO007.zip.

Sun, et al., “Seamless Switching of Scalable Video Bitstreams for
Efficient Streaming,” IEEE Transactions on Multimedia, vol. 6, No.
2, Apr. 2004, pp. 291-303.

Telefon AB LM Ericsson, et al., “Media Presentation Description in
httpstreaming”, 3GPP Draft; S4-100080-MPD, 3rd Generation Part-
nership Project (3GPP), Mobile Competence Centre; 650, Route
Des Lucioles; F-06921 Sophia-Antipolis Cedex; France, vol. SA
WG4, no. St Julians, Malta; Jan 25, 2010, Jan. 20, 2010,
XP050437773, [retrieved on Jan. 20, 2010].

US 9,432,433 B2
Page 11

(56) References Cited
OTHER PUBLICATIONS

Thomas Wiegand, et al., “Joint Draft ITU-T Rec. H.264 | ISO/IEC
14496-10 / Amd.3 Scalable video coding”, Joint Video Team (JVT)
of ISO/IEC MPEG & ITU-T VCEG (ISO/IEC JTC1/SC29/WG11
and ITU-T SG16 Q.6) 24th Meeting: Geneva, Switzerland, Jun.
29-Jul. 5, 2007, pp. 1-559.

Tsunoda T., et al., “Reliable Streaming Contents Delivery by Using
Multiple Paths,” Technical Report of the Institute of Electronics,
Information and Communication Engineers, Japan, Mar. 2004, vol.
103, No. 692, pp. 187-190, NS2003-331, IN2003-286.

U.S. Appl. No. 12/840,146, by Ying Chen et al., filed Jul. 20, 2010.
U.S. Appl. No. 12/908,537, by Ying Chen et al., filed Oct. 20, 2010.
U.S. Appl. No. 12/908,593, by Ying Chen et al., filed Oct. 20, 2010.
U.S. Appl. No. 13/082,051, by Ying Chen et al., filed Apr. 7, 2011.
U.S. Appl. No. 13/205,559, by Ying Chen et al., filed Aug. 8 2011.
U.S. Appl. No. 13/205,565, by Ying Chen et al., filed Aug. 8, 2011.
U.S. Appl. No. 13/205,574, by Ying Chen et al., filed Aug. 8, 2011.
Universal Mobile Telecommunications System (UMTS); LTE;
Transparent end-to-end Packet-switched Streaming Service (PSS);
Protocols and codecs (3GPP TS 26.234 version 9.3.0 Release 9),
Technical Specification, European Telecommunications Standards
Institute (ETSI), 650, Route Des Lucioles; F-06921 Sophia-
Antipolis; France, vol. 3GPP SA, No. V9.3.0, Jun. 1, 2010,
XP014047290, paragraphs [5.54.2], [5.5.4.3], [5.5.4.4], [54.5],
[5.5.4.6] paragraphs [10.2.3], [11.2.7], [12.2.3], [12.4.2], [12.6.2]
paragraphs [12.6.3], [12.6.3.1], [12.6.4], [12.6.6].

Viswanathan, et al., “Metropolitan area video-on-demand services
using pyramid broadcasting”, Multimedia Systems, 4(4): 197-208
(1996).

Viswanathan, et al., “Pyramid Broadcasting for Video-on-Demand
Service”, Proceedings of the SPIE Multimedia Computing and
Networking Conference, vol. 2417, pp. 66-77 (San Jose, CA, Feb.
1995).

Viswanathan,Subramaniyam R., “Publishing in Wireless and
Wireline Environments,” Ph. D Thesis, Rutgers, The State Univer-
sity of New Jersey (Nov. 1994), 180pages.

Wang,“On Random Access”, Joint Video Team (JVT) of ISO/IEC
MPEG & ITU-T VCEG (ISO/IEC JTCIISC29/WG11 and ITU-T
SG16 Q.6), 4th Meeting: Klagenfurt, Austria, Jul. 22-26, 2002, p.
13.

Watson, M., et, al. “Asynchronous Layered Coding (ALC) Protocol
Instantiation”, IETF RFC 5775, pp. 1-23, (Apr. 2010).

Wenger, et al., RFC 3984, “RTP Payload Format for H.264 Video,”
Feb. 2005, 84 pp.

Wong, J.W., “Broadcast delivery”, Proceedings of the IEEE, 76(12):
1566-1577, (1988).

Yamauchi, Nagamasa. “Application of Lost Packet Recovery by
Front Error Correction to Internet Multimedia Transfer” Proceed-
ings of Workshop for Multimedia Communication and Distributed
Processing, Japan, Information Processing Society of Japan (IPS),
Dec. 6, 2000, vol. 2000, No. 15, pp. 145-150.

Yin et al., “Modified Belief-Propogation algorithm for Decoding of
Irregular Low-Density Parity-Check Codes”, Electronics Letters,
IEE Stevenage, GB, vol. 38, No. 24, Nov. 21, 2002, pp. 1551-1553.
Ying Chen et al: “Response to the CfP on HTTP Streaming:
Adaptive Video Streaming based on AVC”, 93 MPEG Meeting; Jul.
26, 2010-Jul. 30, 2010; Geneva, (Motion Picture Expert Group or
ISO/IEC JTC1/SC29/WGl1), No. MI17909, Jul. 26, 2010,
XP030046499.

Zorzi, et al.: “On the Statistics of Block Errors in Bursty Channels,”
IEEE Transactions on Communications, vol. 45, No. 6, Jun. 1997,
pp. 660-667.

Cataldi et al., “Sliding-Window Raptor Codes for Efficient Scalable
Wireless Video Broadcasting With Unequal Loss Protection”, IEEE
Transactions on Image Processing, Jun. 1, 2010, pp. 1491-1503, vol.
19, No. 6, IEEE Service Center, XP011328559, ISSN: 1057-7149,
DOI: 10.1109/TIP.2010.204298S.

Gracie et al., “Turbo and Turbo-Like Codes: Principles and Appli-
cations in Telecommunications”, Proceedings of the IEEE, Jun. 1,

2007, pp. 1228-1254, vol. 95, No. 6, IEEE, XP011189323, ISSN:
0018-9219, DOI: 10.1109/JPROC.2007.895197.

Huawei et al., “Implict mapping between CCE and PUCCH for
ACK/NACK TDD”, 3GPP Draft;, R1-082359, 3rd Generation Part-
nership Project (3GPP), Mobile Competence Centre; 650, Route
Des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, vol. RAN
WG1, no. Warsaw, Poland, Jun. 24, 2008, XP050110650, [retrieved
on Jun. 24, 2008].

International Search Report and Written Opinion—PCT/US2012/
024737—ISA/EPO—May 11, 2012.

Kimura et al, “A Highly Mobile SDM-0FDM System Using
Reduced-Complexity-and-Latency Processing”, IEEE International
Symposium on Personal, Indoor and Mobile Radio Communica-
tions (PIMRC), Sep. 1, 2007, pp. 1-5, IEEE, XP031168836, ISBN:
978-1-4244-1143-6, DOI: 10.1109/PIMRC.2007.4394758.

Luby Qualcomm Incorporated, “Universal Object Delivery using
RaptorQ; draft-draft-luby-uod-raptorq-OO.txt”, Internet Engineer-
ing Task Force (IETF), Standardworkingdraft, Internet Society
(ISOC), Mar. 7, 2011, pp. 1-10, XP015074424, [retrieved on Mar.
7, 2011].

Mackay, “Fountain codes Capacity approaching codes design and
implementation”, IEE Proceedings: Communications, Dec. 9, 2005,
pp. 1062-1068, vol. 152, No. 6, Institution of FElectrical Engineers,
XP006025749, ISSN: 1350-2425, DOL 10.1049/1P-
COM:20050237.

Todd, “Error Correction Coding: Mathematical Methods and Algo-
rithms”, Mathematical Methods and Algorithms, Jan. 1, 2005, pp.
451-534, Wiley, XP002618913.

Anonymous: “Technologies under Consideration”, 100. MPEG
Meeting;Apr. 30, 2012-May 4, 2012; Geneva; (Motion Picture
Expert Group or ISO/IEC JTC1 /SC29/WGl1),, No. N12682, Jun.
7, 2012, XP030019156.

Gil A, et al, “Personalized Multimedia Touristic Services for
Hybrid Broadcast/Broadband Mobile Receivers,” IEEE Transac-
tions on Consumer Electronics, 2010, vol. 56 (1), pp. 211-219.
Hannuksela M.M., et al., “DASH: Indication of Subsegments Start-
ing with SAP, 97. MPEG Meeting; Jul. 18, 2011-Jul. 22, 2011,
TORINO; (Motion Picture Expert Group or ISO/IEC JTC1/SC29/
WG11)” No. m21096, Jul. 21, 2011, XP030049659.

Hannuksela M.M., et al., “ISOBMFF: SAP definitions and ‘sidx’
box”, 97. MPEG Meeting; Jul. 18, 2011-Jul. 22, 2011; TORINO;
(Motion Picture Expert Group or ISO/IEC JTC1/SC29/WG11) No.
m21435, Jul. 22, 2011, XP030049998.

Li, M, et al., “Playout Buffer and Rate Optimization for Streaming
over IEEE 802.11 Wireless Networks”, Aug. 2009, Worcester
Polytechnic Institute, USA.

Michael G et al., “Improved low-density parity-check codes using
irregular graphs”, Information Theory, IEEE Transactions on,Feb.
2001,vol. 47, No. 2,pp. 585-598.

Ohashi A et al., “Low-Density Parity-Check (LDPC) Decoding of
Quantized Data,” Technical Report of the Institute of Electronics,
Information and Communication Engineers, Aug. 23, 2002, vol.
102, No. 282, pp. 47-52, RCS2002-154.

Roumy A., et al., “Unequal Erasure Protection and Object Bundle
Protection with the Generalized Object Encoding Approach”, Inria-
00612583, Version 1, Jul. 29, 2011, 25 pages.

Schulzrinne, et al., “Real Time Streaming Protocol (RTSP)” Net-
work Working Group, Request for Comments: 2326, Apr. 1998, pp.
1-92.

Stockhammer T., et al., “DASH: Improvements on Representation
Access Points and related flags”, 97. MPEG Meeting; Jul. 18,
2011-Jul. 27, 2011; Torino; (Motion Picture Expert Group or
ISO/IEC JTCL/SC29/WG1l) No. m20339, Jul. 24, 2011,
XP030048903.

Wadayama T, “Introduction to Low Density Parity Check Codes and
Sum-Product Algorithm,” Technical Report of the Institute of
Electronics, Information and Communication Engineers, Dec. 6,
2001, vol. 101, No. 498, pp. 39-46, MR2001-83.

Yamazaki M., et al., “Multilevel Block Modulation Codes Con-
struction of Generalized DFT,” Technical Report of the Institute of
Electronics, Information and Communication Engineers, Jan. 24,
1997, vol. 96, No. 494, pp. 19-24, IT96-50.

US 9,432,433 B2
Page 12

(56) References Cited
OTHER PUBLICATIONS

3GPP: “3rd Generation Partnership Project; Technical Specification
Group Services and system Aspects; Multimedia Broadcast/Multi-
cast Service (MBMS); Protocols and codecs (Release 6)”, Sophia
Antipolis, France, Jun. 1, 2005, XP002695256, Retrieved from the
Internet: URL:http://www.etsi.org/deliver/etsi_ ts/126300__
126399/126346/06.01.00__60/ts_126346v060100p.pdf.

3rd Generation Partnership Project; Technical Specification Group
Services and System Aspects; Transparent end-to-end Packet-
switched Streaming Service (PSS); Progressive Download and
Dynamic Adaptive Streaming over HTTP (3GP-DASH) (Release
10), 3GPP Standard; 3GPP TS 26.247, 3rd Generation Partnership
Project (3GPP), Mobile Competence Centre ; 650, Route Des
Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, vol. SA WG4,
No. V10.0.0, Jun. 17, 2011, pp. 1-94, XP050553206, [retrieved on
Jun. 17, 2011].

ATIS: “PTV Content on Demand Service”, IIF-WT-063R44, Nov.
11, 2010, pp. 1-124, XP055045168, Retrieved from the Internet:
URL:ftp://veieg.its.bldrdoc.gov/Documents/VQEG__ Atlanta
Nov10/MeetingFiles/Liaison/IIF-WT-063R44_ Content_on_ De-
mand.pdf [retrieved on Nov. 22, 2012].

Bouazizi I, et al., “Proposals for ALC/FLUTE server file format
(14496-12Amd.2)”, 77. MPEG Meeting; Jul. 17, 2006-Jul. 21,
2006; Klagenfurt; (Motion Pictureexpert Group or ISO/IEC JTC1/
SC29/WG11), No. M13675, Jul. 12, 2006, XP030042344, ISSN:
0000-0236.

Frojdh P, et al., “Study on 14496-12:2005/PDAM2 ALU/ FLUTE
Server File Format”, 78 MPEG Meeting; Oct. 23, 2006-Oct. 27,
2006; Hangzhou: (Motion Picturexpert Group or ISO/ IEC JTC1/
SC29/WG11) No. M13855, Oct. 13, 2006, XP030042523, ISSN:
0000-0233.

International Search Report and Written Opinion—PCT/US2012/
053394—ISA/EPO—Feb. 6, 2013.

Luby et al., RaptorQ Forward Error Correction Scheme for Object
Delivery draft-ietf-rmt-bb-fec-raptorq-00, Qualcomm, Inc. Jan. 28,
2010.

Motorola et al: “An Analysis of DCD Channel Mapping to BCAST
File Delivery Sessions; OMA-CD-DCD-2007-0112-INP_DCD__
Channel_Mapping_ to_ BCAST_File_ Delivery”, OMA-CD-
DCD-2007-0112-INP_DCD_ Channel_Mappi ng To_ BCAST__
File_ Delivery, Open Mobile Alliance (OMA), 4330 La Jolla
Village Dr., Suite 110 San Diego, CA 92122; USA Oct. 2, 2007, pp.
1-13, XP064036903.

Qualcomm Incorporated: “RatorQ Forward Error Correction
Scheme for Object Delivery draft-ietf-rmt-bb-fec-raptorq-04”,
Internet Engineering Task Force, IETF, pp. 1-68, Aug. 24, 2010.
3GPP TSG-SA4 #57 S4-100015, IMS based PSS and MBMS User
Service extensions, Jan. 19, 2010, URL : http://www.3gpp.org/ftp/
tsg_ sa/WG4_CODEC/TSGS4__57/docs/S4-100015.zip.

3rd Generation Partnership Project; Technical Specification Group
Services and System Aspects; Transparent end-to-end Packet-
switched Streaming Service (PSS);Protocols and codecs(Release 9)
3GPP TS 26.234 V9.3.0, Jun. 23, 2010 p. 85-102,URL,http://www.
3gpp.org/ttp/TSG_SA/WG4_CODEC/TSGS4__59/Docs/S4-
100511 .zip, 26234-930.zip.

Lee, 1.Y., “Description of Evaluation Experiments on ISO/IEC
23001-6, Dynamic Adaptive Streaming over HTTP”, ISO/IEC
JTC1/SC29/WG1IMPEG2010/N11450, Jul. 31, 2010, 16 pp.
Luby M., “Simple Forward Error Correction (FEC) Schemes,”
draft-luby-rmt-bb-fec-supp-simple-00.txt, pp. 1-14, Jun. 2004.
Luby M., “LT Codes”, Foundations of Computer Science, 2002,
Proceedings, The 43rd Annual IEEE Symposium on, 2002.
Makoto N., et al., “On Tuning of Blocking LU decomposition for
VP2000 series” The 42th Information Processing Society of Japan
Conference (st term in 1991), Feb. 25, 1991, pp. 71-72, 4B-8.
Miller G., et al., “Bounds on the maximum likelihood decoding
error probability of low density parity check codes”, Information
Theory, 2000. Proceedings. IEEE International Symposium on,
2000, p. 290.

Morioka S., “A Verification Methodology for Error Correction
Circuits over Galois Fields”, Tokyo Research Laboratory, IBM
Japan Ltd, pp. 275-280, Apr. 22-23, 2002.

Muramatsu J., et al., “Low density parity check matrices for coding
of multiple access networks”, Information Theory Workshop, 2003.
Proceedings. 2003 IEEE , Apr. 4, 2003, pp. 304-307.

Qualcomm Incorporated: “Adaptive HTTP Streaming: Complete
Proposal”, 3GPP TSG-SA4 AHI Meeting S4-AHI170, Mar. 2, 2010,
URL, http://www.3gpp.org/FTP/tsg_ sa/WG4_CODEC/Ad-hoc__
MBS/Docs_ AHI/S4-AHI170.zip, S4-AH170_CR__
AdaptiveHTTPStreaming-Full.doc.

Qualcomm Incorporated: “Corrections to 3GPP Adaptive HTTP
Streaming”, 3GPP TSG-SA4 #59 Change Request 26.234 CR0172
S4-100403, Jun. 16, 2010, URL, http://www.3gpp.org/FTP/tsg_sa/
WG4_CODEC/TSGS4__59/Docs/S4-100403 .zip, S4-100403_
CR__26234-0172-AdaptiveHTTPStreaming-Rel-9.doc.

Samukawa, H. “Blocked Algorithm for LU Decomposition” Journal
of the Information Processing Society of Japan, Mar. 15, 1993, vol.
34, No. 3, pp. 398-408.

Ramsey B, “HTTP Status: 206 Partial Content and Range
Requests,” May 5, 2008 obtained at http://benramsey.com/blog/
2008/05/206-partial-content-and-range-requests/.

Gerard F., et al., “HTTP Streaming MPEG media—Response to
CFP”, 93. MPEG Meeting, Geneva Jul. 26, 2010 to Jul. 30, 2010.
Chikara S, et al., “Add-on Download Scheme for Multicast Content
Distribution Using LT Codes”, IEICE. B, Communications, Aug. 1,
2006, J89-B (8), pp. 1379-1389.

Hasan M A., et al., “Architecture for a Low Complexity Rate-
Adaptive Reed-Solomon Encoder”, IEEE Transactions on Comput-
ers, IEEE Service Center, Los Alamitos, CA, US, vol. 44, No. 7, Jul.
1, 1995, pp. 938-942 XP000525729, ISSN: 0018-9340, DOI:
10.1109/12.392853.,

Tetsuo M., et al., “Comparison of Loss Resilient Ability between
Multi-Stage and Reed-Solomon Coding”, Technical report of
IEICE. CQ, Communication Quality, vol. 103 (178), Jul. 4, 2003,
pp. 19-24.

Anonymous: “Technologies under Consideration”, 98. MPEG
Meeting; Nov. 28, 2011-Dec. 2, 2011; Geneva; (Motion Picture
Expert Group or ISO/IEC JTC1/SC29/WG11),, No. N12330, Dec.
3, 2011, XP030018825.

Anonymous: “Text of ISO/IEC IS 23009-1 Media Presentation
Description and Segment Formats”, 98. MPEG Meeting; Nov. 28,
2011-Feb. 12, 2012; Geneva; (Motion Picture Expert Group or
ISO/IEC JTICL/SC29/WGl1),, No. NI12329, Jan. 6, 2012,
XP030018824.

Bross, et al., “High efficiency video coding (HEVC) text specifi-
cation draft 6,” JCTVC-H1003, Joint Collaborative Team on Video
Coding (JCT-VC) of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/
WG11, 8th Meeting: San José, CA, USA, Feb. 1-10, 2012, 259 pp.
“Digital Video Broadcasting (DVB); Framing structure, channel
coding and modulation for digital terrestrial television, ETSI EN
300 744” ETSI Standards, LIS, Sophia Antipolis Cedex, France,
V1.6.1, pp. 9, Jan. 10, 2009.

Kim J., et al., “Enhanced Adaptive Modulation and Coding
Schemes Based on Multiple Channel Reportings for Wireless Mul-
ticast Systems”, 62nd IEEE Vehicular Technology Conference,
VTC-2005-Fall, Sep. 25-28, 2005, vol. 2, pp. 725-729,
XP010878578, DOI: 1 0.1109/VETECF.2005.1558019, ISBN: 978-
0-7803-9152-9.

Qualcomm Incorporated: “RaptorQ Technical Overview”, pp. 1-12,
Oct. 1, 2010.

Watson M., et al., “Forward Error Correction (FEC) Framework
draft-ietf-fecframe-framework-11,” 2011, pp. 1-38, URL,http://
tools.ietf.org/pdf/draft-ietf-fecframe-framework-11.pdf.

Watson M., et al., “Raptor FEC Schemes for FECFRAME draft-
ietf-fecframe-raptor-04,” 2010, pp. 1-21, URL, http://tools.ietf.org/
pdf/draft-ietf-fecframe-raptor-04.pdf.

Moriyama, S., “S. Present Situation of Terrestrial Digital Broad-
casting in Europe and USA”, Journal of The Institute of Image
Information and Television Engineers, Nov. 20, 1999, vol. 53, No.
11, pp. 1476-1478.

Qualcomm Incorporated: “Pseudo CR: Adaptive HTTP Stream-
ing—Full Solution Proposal,” 3GPP TSG-SA WG4#57 S4-100060,
Jan. 29, 2010, 17 pages.

* cited by examiner

U.S. Patent Aug. 30, 2016 Sheet 1 of 29 US 9,432,433 B2
102
- movies
- audio
- yideo
3 - images :
Content - témeg;i data preseniations e
- hybrid presentations
103 104 106 108
Y~ Request
Content < [Ha12
Prepargtion HTTP HTTP
. . HTTP .
(Media Streaming Streaming
" Cache)
Ingestion Server - Chisnt
System) [BA14
5 : \& = Request L&
Program Program Program Program
Code Code Code Code
Content
Store 110 | 101

FIG. 1

US 9,432,433 B2

Sheet 2 of 29

Aug. 30, 2016

U.S. Patent

¢ B
E::ﬂ
{igg}
SIMONASBIUY
Bumisg
prleits
{shaunsuony . s
GBUINL-UON -
Agjdsicy - mmw\/r F 174°
O/ I8s - kS
SIadNpsuBl] BIcioleizlg layng hﬂwwmswmm
BIDSI BIDSIN ¢ HOOIE pilellel PHOMISN
RS Ry AN
T4} yra)
EiailfHeY HHDSIBG
—
isyng $o0ig
(D) weayshg wayy gz, RV,

Ewom\

(W0t

{(z}enL

U.S. Patent Aug. 30, 2016 Sheet 3 of 29 US 9,432,433 B2

300 ~v Bus
~/| Ingestion Video 308
302 Processor B > Display
508 M «— > 310
- . 310
3 emory Alphanumeric | /"
Program fnput Device
Code
312
S
Content
o) v i £
306 Disk Network Source
Storage interface Content
] I
Store

FIG. 3

U.S. Patent

402

Client
Processor

Aug. 30, 2016

Sheet 4 of 29

Bus

4047

Memory

Program
Code

-t

Video |~/

Display

US 9,432,433 B2

468

406

Disk
Storage

Alphanumeric
input Bevice

410

-

412

L~/

Network
interface

FIG. 4

- Reguests

—Reasponses

US 9,432,433 B2

Sheet 5 of 29

Aug. 30, 2016

U.S. Patent

20
X

sBggg-g-sue
feBUBLLIBLUIOD>//dny
S06} = UEs

0z ewbes eipapy

sBeE-graye

e EBLILIRUIOD//-dn Ly
80 = uEs[p

7 wawibies spayy

sBg-g-sye
JOULBUUIBWIOED» gy
sp = weie[T

} Jowbag epajy

dbgg-sue

JcaUBLLIBUICD S/ ant NN $05

wielfag uonezEeRL

opl wswbag

(071505

{1)zos
RY

(L)508

sbe propuig-g-sue/
aEduis

801 = LOERIG]

o usuibag

08Y WbIBY ‘079 P
S/SIO00G = Uipimpuied
L uopsuesaitey

gLl ™

G Old

(@hos
N

S/SPPO0L
{Zizns A Z uonEpIosaIiny
S/EUDIGOY
(s T | uogEluBsRIdEY

JeSUBUURILODS//00Y
= "ResEg
S00L = Uels
‘POLISY

716 M swiles meday

00%
Y

(€108 J

(Zhos

{1hos 1

8667 = VEIS ‘pousd

SO0} = Hei8 o

SO = HEJS POLS

Bloyts FralicTy
LRSS DI RIDOW

716 ~ uewBeg sedey _—--T
olg MO | _ ———"
oo ~ Adidt | gig ueLbsg aoinog
oos ~ Qe | gie ~ usifog aninog
oog ~ GdN | g1 ™ webas amnog
BUCIT JUBIIOT

N

U.S. Patent Aug. 30, 2016 Sheet 6 of 29 US 9,432,433 B2

(510
1))
Index .
. . Fragment 1 | Fragment 2 | Fragment 3 . Fragment n
information
((
1))
TimeQOffset {ms) ByteOfiset RAP Indicator
20,000 0 1
20,485 50,245 0
24,100 101,354 0
21,623 157,034 1
21,865 198,045 0
22,540 256,654 s
23,045 301,245 1
24,000 358,436 0
24,605 400,983 1
25,132 465,745 ¢
25,845 504,103 0

FIG. 6

U.S. Patent Aug. 30, 2016 Sheet 7 of 29 US 9,432,433 B2

700
\\x

Simple Index

|—>

51 F1 k2 F3 F4 F5 FB

FIG. 7(a)

702
\

Hierarchical Index

~ ~ -
SZ

F1 F2 | 83 | F3 F4 | 84 F& Fe

&1

FIG. 7(b)

US 9,432,433 B2

Sheet 8 of 29

Aug. 30, 2016

U.S. Patent

-4

(8)8 ©i4
Z uonejuasaids o) wawbss sonog
T e]
Ve 2 22 L'Z Buixapu; m
pite A P He JuowBss “
]
1 1 1 1
1 1 1 1
: : : :
' o yaeg ¢z juod jesg Z'Z wod yeey L jued yeag
L uoiieussaldas aop uswibas eounog
mmmmmmmmmmm—————————
da i
§'1 '} e Z' L'y mwmxmwg m
il pite ils e HE Jowbos m
]
1 1 1 1
1 1 1 1
i i i i
1 od yesg £ jod yosg 71 nod ey Ly pund yeag
P b dew P

088 B2

08 g7 098 /7

O89S Q7 088 GZ DeS p7 DeS O

D88 Z7 088 LF 098 07

siuiod yoaes paubije yim SUCHBIUSSSICdS) J0) 21NOnys wswbas 821n0g

US 9,432,433 B2

Sheet 9 of 29

Aug. 30, 2016

U.S. Patent

(q9)g oI
7 uoneiuasaidal J0 Wwuswbes aninog
T]
. n . . . !
- e e S o upepuy |
wewbeg H
1
1 1 1 1 N EEEmEEEme—
1 1 1 1
i i i i
bz 1iod yoog £z 1iod Jeeg 7'z 1hod yeog L2 1ui0d Yaog
L uoneuasaidal jo) uswbas anunog
mmmmmmmmsmmanenan
: . : . . L doy 1
gL) £ L A Buepul m
pits il pits e Eite JUBWBaS “
1 1 1 1 IIIIIIIIIIIIIIIIIII-
1 1 [] 1
1 1 1 1
: : : :
$'} uod Jesg ¢4 uod yeeg Z'1 juod yeeg Lp wuod yeeg
A |
T
D85 H7 W8S QY 088 JP D88 Q7 08SGE USS PZ 08S¢Z N85S 27 088 L2 098 (f

siod yaes poubyeun yim suoieiussaldal Jo) ainmonis wewbss a2inog

U.S. Patent Aug. 30,2016 Sheet 10 of 29 US 9,432,433 B2

800
Y

Presentation Level
Duration
Encoding
bit rate
codec
resolution
frame rale
pointer (o stream metadata
Content protection / DRM info

Stream Metadala
URLs for segment files

Segment Metadata
Byte range versus lime for requests within segment
{dentification of RAPs

FIG. 9(a)

U.S. Patent Aug. 30,2016 Sheet 11 of 29 US 9,432,433 B2

\, \

Metadata
Table Blocks
HTTP HITRP
Streaming | Sireaming
Server Client

FIG. 9(b)

U.S. Patent Aug. 30,2016 Sheet 12 of 29 US 9,432,433 B2

1000
\

Video Stream

1002
\

Block 1 Block 2 3 4 Block 5 8
A T T T
1004 ~—
RAP RAP RAP RAPF

FIG. 10

U.S. Patent Aug. 30,2016 Sheet 13 of 29 US 9,432,433 B2

Continuous timing across segments

Video samples DDDDDDDDdEDDDDDDDDDDDDDD

Audio samples | | | | | | | | | |

[}
Segment'bmundar’y

Discontinuous timing across segments

Video samples DDDDDDDDﬁ goooooooboooooo

Audio samples | | | | | | | | | | |

|
Segment balundaw

Assumptions:

o Hatched frame chosen as boundary point for independent reasons

o Audio must never begin later than video

Notes:

e In continuous case, second segment is the same confent as the first

o In discontinuous case, second segment is different content from the first

FiG. 11

U.S. Patent Aug. 30,2016 Sheet 14 of 29 US 9,432,433 B2

Black

1200 1204 1206 1208 1210

Scalable

- Scaiab?e Scalable Layer 3 £y
Layer 1 Laver 2 {not fully

Received) |
A A
1212
Byte or Time ranges \ Y

Media
Presentation

— Meladata

FIG. 12

U.S. Patent Aug. 30, 2016 Sheet 15 of 29 US 9,432,433 B2

Time

ts

ts

FiG. 13

biock
played out
ts

o
oot
-
— .=
5t
s>
Lo
L g
Y o
.l

N

Bourrent
{ms)

US 9,432,433 B2

Sheet 16 of 29

Aug. 30, 2016

U.S. Patent

N

aul |

9

mw ww mw

AN

/I

pasned o pedegid
noded A0

T~

DOAIBDSS
Ho0iG

{sw)
JWaLNOg

US 9,432,433 B2

Sheet 17 of 29

Aug. 30, 2016

U.S. Patent

iNd=d ‘Bl08IS=8 ‘MO Gl B4
Emwwm (00G -/+) 0Oy -/+) (00€ -/+) {DOZ ~/+) {001 -/+)
00004 0008 0009 000y 0002

4 // 1 7

- S 1

4 /m S

E m///m

4 . 4 /

{0G -7+)
005

{001 -/+)
0001

{061 -/+)
00S1E

{00€ -/+)
000g

{s/5u4)
OfRigy

U.S. Patent Aug. 30,2016 Sheet 18 of 29 US 9,432,433 B2

Ready to make
nexi request?

1310 r1320

Issue a request for
the next block of the
current represeniation

State value = "Low”, or
State value = "Full” and not
at highast representation

/1330

Basad on Boyen, determine next L
blocks whose aggregate duration is
approximately a» Boyrens

l f134£}

Issue a request for the next L blocks
of the current reprasentation

FIG. 16

U.S. Patent

Aug. 30,2016 Sheet 19 of 29 US 9,432,433 B2

l /141@

Update the current estimate T of the RTT and
the download speed K of the connection

l /1420

Measure the number of bytes B delivered for
the last request on the connection, and let S be
the number of bytes requested in that request

NO s S-B<X*R*T7?

NO Is there ancther request ready

o be issued on the connection?

/1456

Issua the request on the connection

FiG. 17

US 9,432,433 B2

Sheet 20 of 29

Aug. 30, 2016

U.S. Patent

6L DA

o

g 15anbay

7 1senbay

(] 15onboy

X

-y 19anboy

X

£y }sonboy

X

('nY Rl B ol SR N o]

Vv o1sanbay

& UOTOPUHOD
A0f A}

o7 HONISUBOD
405 ¥

o1 UORISUUOI
11O

ABIAOLAS

18K 189ND3
HREPIpUR’y

8L Ol

1 1senboy

1 1sanboy

PP K

(1 1sonbay

7y 1sonbay

X

X

[l FRVE RUWE FOA B FULN

q 1sonboy

X

0

Y 15onbay

. € HOLISUHOD
A0 O

o7 UDIISHHOD
ABF HF (¥

&1 BORISUUOY
A0} (3

AEOLLY

151] 189nDaE
SFERIpUE 3

U.S. Patent

Aug. 30,2016 Sheet 21 of 29

K‘E"MO

Client obtains a list of internat Protocol
Addresses 1Py, 1P, ... P,

KWQO

is there a new file
to request?

/1?30

Chent obtains file identifier F for the file
Foreach i =1, ..., n, clent forms IPLF

l /1?’40

Foreachl=1, .. n,
Client computes h{IP.F)

\J /1759

Client sorts the list h{(iP F}, ..., h{lP,.F}
Let Ay, ., Ag be the sorted list

l /’E 760

Let j be the index such that h{IP.F) = A,

l f1 770

Client makes reguest for file F from IP,

US 9,432,433 B2

FIG. 20

U.S. Patent Aug. 30,2016 Sheet 22 of 29 US 9,432,433 B2

<gxpression> 1= <literab> |
<yariable> |
<function> |
(" <expression>) |
<gXpression™ <opsrator> <expression®
<literal> = <sling> | <number>
<variable> = <icken>
<funclion> = <ioken>'{' | <expression> *(' <expression> }}'}
<operator> = 1" <opchar>
<token> .= <iokenchar> *(<tokenchar> | <digit>)
<glring> = " *<chagr> ™
<pumber> o= [Y] P<digit> [©." 1*<digit>]
<digit> = 0-9
<char> = <any ASCH char except "> |/ ™
<tokenchar> = ‘A2 | a2’ |

<opchar> = | = [V |7 ['% ™|

FiG. 21

unsigned long Hash({ const char *p, unsigned long max)

unsigned long hash = §;

while(“p 1= 0)

hash = { hash << 5 } A {{ hash & 58000000 y >> 27) A "pr+y
return hash % max;

}
FIG. 22

U.S. Patent

Example §

Aug. 30, 2016 Sheet 23 of 29

US 9,432,433 B2

Tiile

Simple fixed domain mapeing

File identifier printf {thtte://<domainname>/%s %3d.dfx id, seq:
construction

rule:

File Ix: SPEED PAC 32 Bl Sgsyd?>

Scquence #: 27

Result: /<domainname>/S 52 81 Sgsyd’5 0z22.df=z

Example 2

Title:

oNerr domains ased on iRV

File identifier

1000
- (Mhttp://%3d

.<domainname>/%s %3d.

dfx”,

construction d, 1800y, id, seq)
rule:
File IDx SPEED PAD d75

Resul 564.<domainname>/SPEED PAO 52 E1 Sgsyd7> 022
Example 3

Title: over 10 domains and 1000 directories

Tile wdentifier printf mai me>/%3d/%s $3d.dfx”,

construction rulc:

ny
Uy

J 80

nash (id, @G)

File 1D

- PAO

Sequence #:

Resull;

1‘ <domainname>/564/SEEED PAC

Sgsyd7h

FiG. 23

U.S. Patent Aug. 30,2016 Sheet 24 of 29 US 9,432,433 B2

Bils per second

200000

‘: s 1{}(}%
200000
l L) L) L) l L) L] L] l L] L) L) l L L) L) l L) L] L] l G
0s 20s 40s 60s 850s 100s
200000
{c) Red E 160000
| L L R R L NN R RN LA B A A D L {
Os 20s 40s 80s &80s 100s
200000
| L) L) L) | L) L} L) | L) L) L) | L) L) L) | L) L} L) | 0
(s 20s 40s 60s 80s 100s
200000
(e) Blue
100000
| L) L) L) | L) L] L] | L L) L) | L) L) L) | L) L] L | G
Os 208 40s 50s 80s 100s

Timeline of TCP connections

typical bandwidth fluctuation of 53 TCP connections

FIG. 24

US 9,432,433 B2

Sheet 25 of 29

Aug. 30, 2016

U.S. Patent

¢ Ol

S} (000'05 SHG 000'0S 7 SH4 000°09 7 3G 000°0S 7)G 00005
prelviiept-ail
iop qedas 34 Ho01q 1841
A A A A

Y Y Y Y Y

snig anig anig anig anig
UORoBUUGD UOROBUUND LORIBUUDD LUOIOBUUOD LOROBUUOD
U 1senbsyy uo psanboyy uo 1s8nbon uo 1senbay Uuo 1senbay

eiep Jiedss + 83.n0% 10} sisanbai J41 1K sidninp

US 9,432,433 B2

Sheet 26 of 29

Aug. 30, 2016

U.S. Patent

9¢ "B
SpUO0BS JV 9L S VL EL L VL L 6090 40 9080 V0 €0 E0L0 0
L 1 1 1 1 L 1 1 1 1 1 1 1 L 1 1 1 1 'Q
N 8 4 |
ozdoumolo- ¢ il ov $0008
044 ‘M -O-
id B 000004
usaloy ©
Ped
000051
shid |
Hoeld &
O 000002
a4 e
Buisn 10U usym Guisn usym
BIBIBADDSS BGBIBACOSY 000052
004G 1841 %00iq 1S4i-)
D34 WOYM pue POAIBOBI Siid

yiim awy Buiddez jpuuey 3o sidwexy

U.S. Patent

Aug. 30, 2016

Source Segment

Sheet 27 of 29 US 9,432,433 B2

(510
)]
Index Fragment 1 | Fragment 2 | Fragment 3 Fragmeni n
information g agme B e agn
((
)]
v /2?0
R » Rapair Segmaeant
g Generator
Repair Segment 519
(! -~
)]
Repair Repair Repair “ea Repair
block 1 block 2 block 3 block n
((
)J

FiG. 27

U.S. Patent Aug. 30,2016 Sheet 28 of 29 US 9,432,433 B2

Byta Byte Byle Byte Byle Byle Byte
8400 6464 6528 B592 Ba56 8720 8784
| Byte ! ! ! Byte |
| 6410 B770

Fragment 2

L}
}
)
1
l
l
38 with 58 with S8 with SS with 38 with 58 with

th
ESIO S 1 ESt2 £S5 3 ESH4 ESiE
1
]
Source biock 2 SSwithESI5is |
filled with zeroes |
: \ for encoding/ :
decoding beyond |
RS with RS with this dotted line '
ESiB ESEY
! Repair block 2 |
| |
] 1
Bite Byte
3264 3392

FiG. 28

US 9,432,433 B2

Sheet 29 of 29

Aug. 30, 2016

U.S. Patent

6C B

| |
_ “ _ “ “
_ “ _ “ “
_ i _ | i
_ i _ | i
_ i _ " "
_ “ _ “ “
gotowbes || -1 uswlbes _ “ |
I " _ " "
_ m _ “ “
_ | _ | "
[+ wisuibes L+ uswies i usuifes "
l _ | i !
_ m _ m "
I | _ “ “
_ | L+1 JUsWRes i uewwBas -t E@Emm_m
! m _ _ _
.] 1 .
(C+1}8) " (g+11)s1 {1+ m 08y {1-11)s)

A_‘ _ " __ _ A_~ “ ‘_ﬂ “ A_‘

_ “ _ “ “
o4t uswBes || 4 Emﬁnmwm L+ Jusfies mm wetBas -t E@Emm_m
! : | i :
} »! [m I
I — -
ol “ L T “

¢11e s wswbes
BIDSI SIISSenoYy

71 12181 weowbes
BIPSIA 210188000y

L 11 1sy wswbses
BIDAIY BIQISSBONY

14 weswibas
BIDOW POQUOSe

US 9,432,433 B2

1

ENHANCED BLOCK-REQUEST STREAMING
SYSTEM USING SIGNALING OR BLOCK
CREATION

CROSS-REFERENCES TO RELATED
APPLICATIONS

This application is a Nonprovisional patent application
claiming benefit under 35 USC §119(e) of the following
provisional applications, each naming Michael G. Luby, et
al. and each entitled “Enhanced Block-Request Streaming
System”:

U.S. Provisional Patent Application No. 61/244,767, filed
Sep. 22, 2009,

U.S. Provisional Patent Application No. 61/257,719, filed
Nov. 3, 2009,

U.S. Provisional Patent Application No. 61/258,088, filed
Nov. 4, 2009,

U.S. Provisional Patent Application No. 61/285,779, filed
Dec. 11, 2009, and

U.S. Provisional Patent Application No. 61/296,725, filed
Jan. 20, 2010.

This application also claims benefit under 35 USC §119
(e) of U.S. Provisional Patent Application No. 61/372,399,
filed Aug. 10, 2010, naming Ying Chen, et al. and entitled
“HTTP Streaming Extensions”.

Each provisional application cited above is hereby incor-
porated by reference for all purposes. The present disclosure
also incorporates by reference, as if set forth in full in this
document, for all purposes, the following commonly
assigned applications/patents:

U.S. Pat. No. 6,307,487 to Luby (hereinafter “Luby I”);

U.S. Pat. No. 7,068,729 to Shokrollahi, et al. (hereinafter
“Shokrollahi I”);

U.S. patent application Ser. No. 11/423,391 filed Jun. 9,
2006 and entitled “Forward Error-Correcting (FEC) Coding
and Streaming” naming Luby, et al. (hereinafter “Luby II”);

U.S. patent application Ser. No. 12/103,605 filed Apr. 15,
2008 entitled “Dynamic Stream Interleaving and Sub-
Stream Based Delivery” naming Luby, et al. (hereinafter
“Luby IIT”);

U.S. patent application Ser. No. 12/705,202 filed Feb. 12,
2010 entitled “Block Partitioning for a Data Stream” naming
Pakzad, et al. (hereinafter “Pakzad”); and

U.S. patent application Ser. No. 12/859,161 filed Aug. 18,
2010 entitled “Methods and Apparatus Employing FEC
Codes with Permanent Inactivation of Symbols for Encod-
ing and Decoding Processes” naming Luby, et al. (herein-
after “Luby 1V”).

FIELD OF THE INVENTION

The present invention relates to improved media stream-
ing systems and methods, more particularly to systems and
methods that are adaptive to network and buffer conditions
in order to optimize a presentation of streamed media and
allows for efficient concurrent, or timely-distributed, deliv-
ery of streamed media data.

BACKGROUND OF THE INVENTION

Streaming media delivery may become increasingly
important as it becomes more common for high quality
audio and video to be delivered over packet-based networks,
such as the Internet, cellular and wireless networks, power-
line networks, and other types of networks. The quality with
which the delivered streaming media can be presented may

10

20

25

30

35

40

45

50

55

60

65

2

depend on a number of factors, including the resolution (or
other attributes) of the original content, the encoding quality
of the original content, the capabilities of the receiving
devices to decode and present the media, timeliness and
quality of the signal received at the receivers, etc. To create
a perceived good streaming media experience, transport and
timeliness of the signal received at receivers may be espe-
cially important. Good transport may provide fidelity of the
stream received at the receiver relative to what a sender
sends, while timeliness may represent how quickly a
receiver can start playing out the content after an initial
request for that content.

A media delivery system can be characterized as a system
having media sources, media destinations, and channels (in
time and/or space) separating sources and destinations.
Typically, a source includes a transmitter with access to
media in electronically manageable form, and a receiver
with an ability to electronically control receipt of the media
(or an approximation thereof) and provide it to a media
consumer (e.g., a user having a display device coupled in
some way to the receiver, a storage device or clement,
another channel, etc.).

While many variations are possible, in a common
example, a media delivery system has one or more servers
that have access to media content in electronic form, and one
or more client systems or devices make requests for media
to the servers, and the servers convey the media using a
transmitter as part of the server, transmitting to a receiver at
the client so that the received media can be consumed by the
client in some way. In a simple example, there is one server
and one client, for a given request and response, but that
need not be the case.

Traditionally, media delivery systems may be character-
ized into either a “download” model or “streaming” model.
The “download” model might be characterized by timing
independence between the delivery of the media data and the
playout of the media to the user or recipient device.

As an example, media is downloaded for enough in
advance of when it is needed or will be used and when it is
used, as much as is needed is already available at the
recipient. Delivery in the download context is often per-
formed using a file transport protocol, such as HTTP, FTP or
File Delivery over Unidirectional Transport (FLUTE) and
the delivery rate might be determined by an underlying flow
and/or congestion control protocol, such as TCP/IP. The
operation of the flow or congestion control protocol may be
independent of the playout of the media to the user or
destination device, which may take place concurrently with
the download or at some other time.

The “streaming” mode might be characterized by a tight
coupling between the timing of the delivery of the media
data and the playout of the media to the user or recipient
device. Delivery in this context is often performed using a
streaming protocol, such as the Real Time Streaming Pro-
tocol (RTSP) for control and the Real Time Transport
Protocol (RTP) for the media data. The delivery rate might
be determined by a streaming server, often matching the
playout rate of the data.

Some disadvantages of the “download” model may be
that, due to the timing independence of the delivery and
playout, either media data may not be available when it is
needed for playout (for example due to the available band-
width being less than the media data rate), causing playout
to stop momentarily (“stalling”), which results in a poor user
experience, or media data may be required to be downloaded
very far in advance of playout (for example due to the
available bandwidth being greater than the media data rate),

US 9,432,433 B2

3

consuming storage resources on the receiving device, which
may be scarce, and consuming valuable network resources
for the delivery which may be wasted if the content is not,
eventually, played out or otherwise used.

An advantage of the “download” model may be that the
technology needed to perform such downloads, for example
HTTP, is very mature, widely deployed and applicable
across a wide range of applications. Download servers and
solutions for massive scalability of such file downloads (for
example, HTTP Web Servers and Content Delivery Net-
works) may be readily available, making deployment of
services based on this technology simple and low in cost.

Some disadvantages of the “streaming” model may be
that generally the rate of delivery of media data is not
adapted to the available bandwidth on the connection from
server to client and that specialized streaming servers or
more complex network architecture providing bandwidth
and delay guarantees are required. Although streaming sys-
tems exist which support variation of the delivery data rate
according to available bandwidth (for example Adobe Flash
Adaptive Streaming), these are generally not as efficient as
download transport flow control protocols such as TCP at
utilizing all the available bandwidth.

Recently, new media delivery systems based on a com-
bination of the “streaming” and “download” models have
been developed and deployed. An example of such a model
is referred to herein as a “block-request streaming” model,
wherein a media client requests blocks of media data from
serving infrastructure using a download protocol, such as
HTTP. A concern in such systems may be the ability to start
playing out a stream, for example decoding and rendering
received audio and video streams using a personal computer
and displaying the video on a computer screen and playing
the audio through built in speakers, or as another example
decoding and rendering received audio and video streams
using a set top box and displaying the video on a television
display device and playing the audio through a stereo
system.

Other concerns, such as being able to decode the source
blocks fast enough to keep up with the source streaming rate,
to minimize the decoding latency and to reduce the use of
available CPU resources are issues. Another concern is to
provide a robust and scalable streaming delivery solution
that allows components of the system to fail without
adversely affecting the quality of the streams delivered to
receivers. Other problems might occur based on rapidly
changing information about a presentation, as it is being
distributed. Thus, it is desirable to have improved processes
and apparatus.

BRIEF SUMMARY OF THE INVENTION

A block-request streaming system provides for improve-
ments in the user experience and bandwidth efficiency of
such systems, typically using an ingestion system that gen-
erates data in a form to be served by a conventional file
server (HTTP, FTP, or the like), wherein the ingestion
system intakes content and prepares it as files or data
elements to be served by the file server, which might or
might not include a cache. A client device can be adapted to
take advantage of the ingestion process as well as including
improvements that make for a better presentation indepen-
dent of the ingestion process.

These embodiments include novel improvements to meth-
ods used at a block-request streaming client and at a block
request ingestion system to determine the sequence, timing
and construction of block requests including the provision of

40

45

50

4

time based indexing. In some embodiments, novel improve-
ments to methods for block and file construction including
variable block sizing and optimal block partitioning are
provided. In some embodiments, novel improvements to
methods of random access point placement, including ran-
dom access point placement across multiple presentation
versions are provided. In some embodiments, novel
improvements to methods of dynamically updating presen-
tation data including signaling within metadata are provided.
In some embodiments, novel improvements to methods for
efficiently presenting live content and time shifting are
provided.

The following detailed description together with the
accompanying drawings will provide a better understanding
of the nature and advantages of the present invention.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 depicts elements of a block-request streaming
system according to embodiments of the present invention.

FIG. 2 illustrates the block-request streaming system of
FIG. 1, showing greater detail in the elements of a client
system that is coupled to a block serving infrastructure
(“BSI”) to receive data that is processed by a content
ingestion system.

FIG. 3 illustrates a hardware/software implementation of
an ingestion system.

FIG. 4 illustrates a hardware/software implementation of
a client system.

FIG. 5 illustrates possible structures of the content store
shown in FIG. 1, including segments and media presentation
descriptor (“MPD”) files, and a breakdown of segments,
timing, and other structure within an MPD file.

FIG. 6 illustrates details of a typical source segment, as
might be stored in the content store illustrated in FIGS. 1 and
5.

FIGS. 7a and 75 illustrate simple and hierarchical index-
ing within files.

FIG. 8(a) illustrates variable block sizing with aligned
seek points over a plurality of versions of a media stream.

FIG. 8(b) illustrates variable block sizing with non-
aligned seek points over a plurality of versions of a media
stream.

FIG. 9(a) illustrates a Metadata Table.

FIG. 9(b) illustrates the transmission of Blocks and Meta-
data Table from server to client.

FIG. 10 illustrates blocks that are independent of RAP
boundaries.

FIG. 11 illustrates continuous and discontinuous timing
across segments.

FIG. 12 is a figure showing an aspect of scalable blocks.

FIG. 13 depicts a graphical representation of the evolution
of certain variables within a block-request streaming system
over time.

FIG. 14 depicts another graphical representation of the
evolution of certain variables within a block-request stream-
ing system over time.

FIG. 15 depicts a cell grid of states as a function of
threshold values.

FIG. 16 is a flowchart of a process that might be per-
formed in a receiver that can request single blocks and
multiple blocks per request.

FIG. 17 is a flowchart of a flexible pipeline process.

FIG. 18 illustrates an example of a candidate set of
requests, their priorities, and which connections that they
can be issued on, at a certain time.

US 9,432,433 B2

5

FIG. 19 illustrates an example of a candidate set of
requests, their priorities, and which connections that they
can be issued on, that has evolved from one time to another.

FIG. 20 is a flowchart of consistent caching server proxy
selection based on a file identifier.

FIG. 21 illustrates a syntax definition for a suitable
expression language.

FIG. 22 illustrates an example of a suitable hash function.

FIG. 23 illustrates examples of file identifier construction
rules.

FIGS. 24(a)-(e) illustrate bandwidth fluctuations of TCP
connections.

FIG. 25 illustrates multiple HTTP requests for source and
repair data.

FIG. 26 illustrates example channel zapping time with
and without FEC.

FIG. 27 illustrates details of a repair segment generator
that, as part of the ingestion system shown in FIG. 1,
generates repair segments from source segments and control
parameters.

FIG. 28 illustrates relationships between source blocks
and repair blocks.

FIG. 29 illustrates a procedure for live services at different
times at the client.

In the figures, like items are referenced with like numbers
and sub-indices are provided in parentheses to indicate
multiple instances of like or identical items. Unless other-
wise indicated, the final sub-index (e.g., “N” or “M”) is not
intended to be limiting to any particular value and the
number of instances of one item can differ from the number
of instances of another item even when the same number are
illustrated and the sub-index is reused.

DETAILED DESCRIPTION OF THE
INVENTION

As described herein, a goal of a streaming system is to
move media from its storage location (or the location where
it is being generated) to a location where it is being con-
sumed, i.e., presented to a user or otherwise “used up” by a
human or electronic consumer. Ideally, the streaming system
can provide uninterrupted playback (or more generally,
uninterrupted “consumption”) at a receiving end and can
begin playing a stream or a collection of streams shortly
after a user has requested the stream or streams. For effi-
ciency reasons, it is also desirable that each stream be halted
once the user indicates that the stream is no longer needed,
such as when the user is switching from one stream to
another stream or it obeys the presentation of a stream, e.g.,
the “subtitle” stream. If the media component, such as the
video, is continued to be presented, but a different stream is
selected to present this media component, it is often pre-
ferred to occupy limited bandwidth with the new stream and
stop the old stream.

A block-request streaming system according to embodi-
ments described herein provides many benefits. It should be
understood that a viable system need not include all of the
features described herein, as some applications might pro-
vide a suitably satisfying experience with less than all of the
features described herein.

HTTP Streaming

HTTP streaming is a specific type of streaming. With
HTTP streaming, the sources might be standard web servers
and content delivery networks (CDNs) and might use stan-
dard HTTP. This technique may involve stream segmenta-
tion and the use of multiple streams, all within the context
of standardized HTTP requests. The media, such as video,

10

20

30

35

40

45

50

55

60

6

may by encoded at multiple bitrates to form different ver-
sions, or representations. The terms “version” and “repre-
sentation” are used synonymously in this document. Each
version or representation may be broken into smaller pieces,
perhaps on the order of a few seconds each, to form
segments. Hach segment may then be stored on a web server
or CDN as a separate file.

On the client side, requests may then be made, using
HTTP, for individual segments that are seamlessly spliced
together by the client. The client may switch to different data
rates based on available bandwidth. The client may also
request multiple representations, each presenting a different
media component, and may present the media in these
representations jointly and synchronously. Triggers for
switching may include buffer occupancy and network mea-
surements, for example. When operating in the steady state,
the client may pace requests to the server to maintain a target
buffer occupancy.

Advantages of HTTP streaming may include bit-rate
adaptation, fast startup and seek, and minimal unnecessary
delivery. These advantages come from controlling the deliv-
ery to be only a short time ahead of the playout, making
maximum use of available bandwidth (through variable bit
rate media), and optimizing stream segmentation and intel-
ligent client procedures.

A media presentation description may be provided to an
HTTP streaming client such that the client can use a col-
lection of files (for example in formats specified by 3GPP,
herein called a 3gp segments) to provide a streaming service
to the user. A media presentation description, and possibly
updates of this media presentation description, describe a
media presentation that is a structured collection of seg-
ments, each containing media components such that the
client can present the included media in a synchronized
manner and can provide advanced features, such as seeking,
switching bitrates and joint presentation of media compo-
nents in different representations. The client may use the
media presentation description information in different ways
for the provisioning of the service. In particular, from the
media presentation description, the HT'TP streaming client
may determine which segments in the collection can be
accessed so that that the data is useful to the client capability
and the user within the streaming service.

In some embodiments, the media presentation description
may be static, although segments might be created dynami-
cally. The media presentation description may be as compact
as possible to minimize access and download time for the
service. Other dedicated server connectivity may be mini-
mized, for example regular or frequent timing synchroniza-
tion between client and server.

The media presentation may be constructed to permit
access by terminals with different capabilities, such as
access to different access network types, different current
network conditions, display sizes, access bitrates and codec
support. The client may then extract the appropriate infor-
mation to provide the streaming service to the user.

The media presentation description may also permit
deployment flexibility and compactness according to the
requirements.

In a simplest case, each Alternative Representation may
be stored in a single 3GP file, i.e., a file conforming as
defined in 3GPP TS26.244, or any other file that conforms
to the ISO base media file format as defined in ISO/IEC
14496-12 or derived specifications (such as the 3GP file
format described in 3GPP Technical Specification 26.244).
In the remainder of this document, when referring to a 3GP
file, it should be understood that ISO/IEC 14496-12 and

US 9,432,433 B2

7

derived specifications can map all described features to the
more general ISO base media file format as defined in
ISO/IEC 14496-12 or any derived specifications. The client
may then request an initial portion of the file to learn the
media metadata (which typically is stored in the Movie
header box, also referred to as “moov” box) together with
movie fragment times and byte offsets. The client may then
issue HTTP partial get requests to obtain movie fragments as
required.

In some embodiments it may be desirable to split each
representation into several segments, where the segments. In
case that the segment format is based on the 3GP file format,
then segments contain non-overlapping time slices of the
movie fragments, called “time-wise splitting”. Each of these
segments may contain multiple movie fragments and each
may be a valid 3GP file in its own right. In another
embodiment, the representation is split into an initial seg-
ment containing the metadata (typically the Movie Header
“moov” box) and a set of media segments, each containing
media data and the concatenation of the initial segment and
any media segment forms a valid 3GP file as well as the
concatenation of the initial segment and all media segments
of one representation forms a valid 3GP file. The entire
presentation may be formed by playing out each segment in
turn, mapping the local timestamps within the file to the
global presentation time according to the start time of each
representation.

It should be noted that throughout this description refer-
ences to a “segment” should be understood to include any
data object which is fully or partially constructed or read
from a storage medium or otherwise obtained as a result of
a file download protocol request, including for example an
HTTP request. For example, in the case of HTTP, the data
objects may be stored in actual files residing on a disk or
other storage medium connected to or forming part of an
HTTP server, or the data objects may be constructed by a
CGI script, or other dynamically executed program, which is
executed in response to the HTTP request. The terms “file”
and “segment” are used synonymously in this document
unless otherwise specified. In the case of HT'TP, the segment
may be considered as the entity body of an HTTP request
response.

The terms “presentation” and “content item” are used
synonymously in this document. In many examples, the
presentation is an audio, video or other media presentation
that has a defined “playout” time, but other variations are
possible.

The terms “block” and “fragment” are used synony-
mously in this document unless otherwise specified and
generally refer to the smallest aggregation of data that is
indexed. Based on the available indexing, a client can
request different portions of a fragment in different HTTP
requests, or can request one or more consecutive fragments
or portions of fragments in one HTTP request. In the case
where ISO base media file format based segments or 3GP
file format based segments are used, a fragment typically
refers to a movie fragment defined as the combination of a
movie fragment header (‘moof’) box and a media data
(‘mdat’) box.

Herein, a network carrying data is assumed to be packet-
based in order to simplify the descriptions herein, with the
recognition that, after reading this disclosure, one skilled in
the art can apply embodiments of the present invention
described herein to other types of transmission networks,
such as continuous bit-stream networks.

Herein, FEC codes are assumed to provide protection
against long and variable delivery times of data, in order to

30

40

45

50

55

65

8

simplify the descriptions herein, with the recognition that,
after reading this disclosure, one skilled in the art can apply
embodiments of the present invention to other types of data
transmission issues, such a bit-flip corruption of data. For
example, without FEC, if the last portion of a requested
fragment arrives much later or has high variance in its arrival
time than previous portions of the fragment then the content
zapping time can be large and variable, whereas using FEC
and parallel requests, only the majority of the data requested
for a fragment need arrive before it can be recovered,
thereby reducing content zapping time and the variability in
content zapping time. In this description, it might be
assumed that the data to be encoded (i.e., source data) has
been broken into equal length “symbols”, which may be of
any length (down to a single bit), but symbols could be of
different lengths for different parts of the data, e.g., different
symbol sizes might be used for different blocks of data.

In this description, in order to simplify the descriptions
herein, it is assumed that the FEC is applied to a “block” or
“fragment” of data at a time, i.e., a “block” is a “source
block” for FEC encoding and decoding purposes. A client
device can use the segment indexing described herein to
help to determine the source block structure of a segment.
One skilled in the art can apply embodiments of the present
invention to other types of source block structures, e.g., a
source block may be a portion of a fragment, or encompass
one or more fragments or portions of fragments.

The FEC codes considered for use with block-request
streaming are typically systematic FEC codes, i.e., the
source symbols of the source block may be included as part
of the encoding of the source block and thus the source
symbols are transmitted. As one skilled in the art will
recognize, the embodiments described herein apply equally
well to FEC codes that are not systematic. A systematic FEC
encoder generates, from a source block of source symbols,
some number of repair symbols and the combination of at
least some of the source and repair symbols are the encoded
symbols that are sent over the channel representing the
source block. Some FEC codes may be useful for efficiently
generating as many repair symbols as needed, such as
“information additive codes” or “fountain codes” and
examples of these codes include “chain reaction codes” and
“multi-stage chain reaction codes”. Other FEC codes such,
as Reed-Solomon codes may practically only generate a
limited number of repair symbols for each source block.

It is assumed in many of these examples that a client is
coupled to a media server or a plurality of media servers and
the client requests streaming media over a channel or a
plurality of channels from the media server or the plurality
of' media servers. However, more involved arrangements are
also possible.

Examples of Benefits

With block-request streaming, the media client maintains
a coupling between the timing of these block requests and
the timing of the media playout to the user. This model may
retain the advantages of the “download” model described
above, while avoiding some of the disadvantages that stem
from the usual de-coupling of media playout from data
delivery. The block-request streaming model makes use of
the rate and congestion control mechanisms available in
transport protocols, such as TCP, to ensure that the maxi-
mum available bandwidth is used for media data. Addition-
ally, the division of the media presentation into blocks
allows each block of encoded media data to be selected from
a set of multiple available encodings.

This selection may be based on any number of criteria,
including matching of the media data rate to the available

US 9,432,433 B2

9

bandwidth, even when the available bandwidth is changing
over time, matching of the media resolution or decoding
complexity to client capabilities or configuration, or match-
ing to user preferences, such as languages. The selection
may also include the download and presentation of auxiliary
components, such as accessibility components, closed cap-
tioning, sub-titles, sign language video, etc. Examples of
existing systems using the block-request streaming model
include Move Networks™, Microsoft Smooth Streaming
and the Apple iPhone™ Streaming Protocol.

Commonly, each block of media data may be stored on a
server as an individual file and then a protocol, such as
HTTP, is used, in conjunction with HTTP server software
executed on the server, to request the file as a unit. Typically,
the client is provided with metadata files, which may for
example be in Extensible Markup Language (XML) format
or in playlist text format or in binary format, which describe
features of the media presentation, such as the available
encodings (for example, required bandwidth, resolutions,
encoding parameters, media type, language), typically
referred to as “representations” in this document, and the
manner in which the encodings have been divided into
blocks. For example, the metadata may include a Uniform
Resource Locator (URL) for each block. The URLs itself
may provide a scheme such as being prepended with the
string “http://” to indicate that protocol that is to be used to
access the documented resource is HIT'TP. Another example
is “ftp://” to indicate that the protocol that is to be used is
FTP.

In other systems, for example, the media blocks may be
constructed “on-the-fly” by the server in response to a
request from the client that indicates the portion of the media
presentation, in time, that is requested. For example, in case
of HTTP with scheme “http://”, the execution of the request
of this URL provides a request response that contains some
specific data in the entity body of this request response. The
implementation in the network on how to generate this
request response may be quite different, depending on the
implementation of the server servicing such requests.

Typically, each block may be independently decodable.
For example in the case of video media, each block may
begin with a “seek point.” In some coding schemes, a seeck
point is referred to as “Random Access Points” or “RAPs”,
although not all RAPS may be designated as a seek point.
Similarly, in other coding schemes, a seek point starts at a
“Independent Data Refresh” frame, or “IDR”, in the case of
H.264 video encoding, although not all IDRs may be des-
ignated as a seek point. A seek point is a position in video
(or other) media where a decoder can start decoding without
requiring any data about prior frames or data or samples, as
might be the case where a frame or sample that is being
decoded was encoded not in a stand-alone fashion, but as,
for example, the difference between the current frame and
the prior frame.

A concern in such systems may be the ability to start
playing out a stream, for example decoding and rendering
received audio and video streams using a personal computer
and displaying the video on a computer screen and playing
the audio through built in speakers, or as another example
decoding and rendering received audio and video streams
using a set top box and displaying the video on a television
display device and playing the audio through a stereo
system. A primary concern may be to minimize the delay
between when a user decides to watch a new content
delivered as a stream and takes an action that expresses that
decision, e.g., the user clicks on a link within a browser
window or on the play button of a remote control device, and

10

15

20

25

30

35

40

45

50

55

60

65

10

when the content starts being displayed on the user’s screen,
hereinafter called the “content zapping time”. Each of these
concerns can be addressed by elements of the enhanced
system described herein.

An example of content zapping is when a user is watching
a first content delivered via a first stream and then the user
decides to watch a second content delivered via a second
stream and initiates an action to start watching the second
content. The second stream may be sent from the same set
or a different set of servers as the first stream. Another
example of content zapping is when a user is visiting a
website and decides to start watching a first content deliv-
ered via a first stream by clicking on a link within the
browser window. In a similar manner, a user may decide to
start playing the content not from the beginning, but from
some time within the stream. The user indicates to their
client device to seek to a time position and the user might
expect that the selected time is rendered instantaneously.
Minimizing content zapping time is important for video
watching to allow users a high quality fast content surfing
experience when searching and sampling a wide range of
available contents.

Recently, it has become common practice to consider
using Forward Error Correction (FEC) codes for protection
of streaming media during transmission. When sent over a
packet network, examples of which include the Internet and
wireless networks such as those standardized by groups such
as 3GPP, 3GPP2 and DVB, the source stream is placed into
packets as it is generated or made available, and thus the
packets may be used to carry the source or content stream in
the order it is generated or made available to receivers.

In a typical application of FEC codes to these types of
scenarios, an encoder may use FEC code in the creation of
repair packets, which are then sent in addition to the original
source packets containing the source stream. The repair
packets have a property that, when source packet loss
occurs, received repair packets may be used to recover the
data contained in the lost source packets. Repair packets can
be used to recover content of lost source packets that are lost
entirely, but might also be used to recover from partial
packet loss occurs, either entirely received repair packets or
even partially received repair packets. Thus, wholly or
partially received repair packets can be used to recover
wholly or partially lost source packets.

In yet other examples, other types of corruption can occur
to the sent data, e.g., values of bits may be flipped, and thus
repair packets may be used to correct such corruption and
provide as accurate as possible recovery of the source
packets. In other examples, the source stream is not neces-
sarily sent in discrete packets, but instead may be sent for
example as a continuous bit stream.

There are many examples of FEC codes that can be used
to provide protection of a source stream. Reed-Solomon
codes are well known codes for error and erasure correction
in communication systems. For erasure correction over, for
example, packet data networks, a well-known efficient
implementation of Reed-Solomon codes uses Cauchy or
Vandermonde matrices as described in L. Rizzo, “Effective
Erasure Codes for Reliable Computer Communication Pro-
tocols”, Computer Communication Review, 27(2):24-36
(April 1997) (hereinafter “Rizzo”) and Bloemer, et al., “An
XOR-Based Erasure-Resilient Coding Scheme”, Technical
Report TR-95-48, International Computer Science Institute,
Berkeley, Calif. (1995) (hereinafter “XOR-Reed-Solomon™)
or elsewhere.

US 9,432,433 B2

11

Other examples of FEC codes include LDPC codes, chain
reaction codes such as those described in Luby I and
multi-stage chain reaction codes such in Shokrollahi 1.

Examples of the FEC decoding process for variants of
Reed-Solomon codes are described in Rizzo and XOR-
Reed-Solomon. In those examples, decoding may be applied
after sufficient source and repair data packets have been
received. The decoding process may be computationally
intensive and, depending on the CPU resources available,
this may take considerable time to complete, relative to the
length of time spanned by the media in the block. The
receiver may take into account this length of time required
for decoding when calculating the delay required between
the start of reception of the media stream and play-out of the
media. This delay due to decoding is perceived by the user
as a delay between their request for a particular media
stream and the start of playback. It is thus desirable to
minimize this delay.

In many applications, packets may be further subdivided
into symbols on which the FEC process is applied. A packet
can contain one or more symbol (or less than one symbol,
but usually symbols are not split across groups of packets
unless the error-conditions among groups of packets is
known to be highly correlated). A symbol can have any size,
but often the size of a symbol is at most equal to the size of
the packet. Source symbols are those symbols that encode
the data that is to be transmitted. Repair symbols are
symbols generated from source symbols, directly or indi-
rectly that are in addition to the source symbols (i.e., the data
to be transmitted can be entirely recovered if all of the
source symbols are available and none of the repair symbols
are available.

Some FEC codes may be block-based, in that encoding
operations depend on the symbol(s) that are in a block and
can be independent of the symbols not in that block. With
block-based encoding, an FEC encoder can generate repair
symbols for a block from the source symbols in that block,
then move on to the next block and not need to refer to
source symbols other than those for the current block being
encoded. In a transmission, a source block comprising
source symbols may be represented by an encoded block
comprising encoded symbols (which might be some source
symbols, some repair symbols, or both). With the presence
of repair symbols, not all of the source symbols are required
in every encoded block.

For some FEC codes, notably Reed-Solomon codes, the
encoding and decoding time may grow impractical as the
number of encoded symbols per source block grows. Thus,
in practice, there is often a practical upper bound (255 is an
approximate practical limit for some applications) on the
total number of encoded symbols that can be generated per
source block, especially in a typical case where the Reed-
Solomon encoding or decoding process is performed by
custom hardware, e.g., the MPE-FEC processes that use
Reed-Solomon codes included as part of the DVB-H stan-
dard for protecting streams against packet loss are imple-
mented in specialized hardware within a cell phone that is
limited to 255 Reed-Solomon total encoded symbols per
source block. Since symbols are often required to be placed
into separate packet payloads, this places a practical upper
bound on the maximum length of the source block being
encoded. For example, if a packet payload is limited to 1024
bytes or less and each packet carries one encoded symbol,
then an encoded source block can be at most 255 kilobytes,
and this is also, of course, an upper bound on the size of the
source block itself.

40

45

55

12

Other concerns, such as being able to decode the source
blocks fast enough to keep up with the source streaming rate,
to minimize the decoding latency introduced by FEC decod-
ing, and to only use a small fraction of the available CPU on
the receiving device at any point in time during FEC
decoding are addressed by elements described herein, as
well as dealing with

The need to provide a robust and scalable streaming
delivery solution that allows components of the system to
fail without adversely affecting the quality of the streams
delivered to receivers.

A block request streaming system needs to support
changes to the structure or metadata of the presentation, for
example changes to the number of available media encod-
ings or changes to the parameters of the media encodings
such as bit rate, resolution, aspect ratio, audio or video
codecs or codec parameters of changes in other metadata
such as URLs associated with the content files. Such
changes may be required for a number of reasons including
editing together content from different sources such as
advertising or different segments of a larger presentation,
modification of URLs or other parameters which become
necessary as a result of changes in the serving infrastructure
for example due to configuration changes, equipment fail-
ures or recovery from equipment failures or other reasons.

Methods exist in which a presentation may be controlled
by a continuously updated playlist file. Since this file is
continuously updated, then at least some of the changes
described above can be made within these updates. A
disadvantage of a conventional method is that client devices
must continually retrieve, also referred to as “polling”, the
playlist file, placing load on the serving infrastructure and
that this file may not be cached for longer than the update
interval, making the task for the serving infrastructure much
more difficult. This is addressed by elements herein so that
updates of the kind described above are provided without the
need for continuous polling by clients for the metadata file.

Another problem, especially in the live services, typically
known from broadcast distribution, is the lack of ability for
the user to view content that has been broadcast earlier than
the time when the user joined the program. Typically, local
personal recording consumes unnecessary local storage or is
not possible as the client was not tuned to the program or is
prohibited by content protection rules. Network recording
and time-shift viewing is preferred, but requires individual
connections of the user to the server and a separate delivery
protocol and infrastructure than the live services, resulting in
duplicated infrastructure and significant server costs. This is
also addressed by elements described herein.

System Overview

One embodiment of the invention is described with ref-
erence to FIG. 1, which shows a simplified diagram of a
block-request streaming system embodying the invention.

In FIG. 1, a block-streaming system 100 is illustrated,
comprising block serving infrastructure (“BSI”) 101 in turn
comprising an ingestion system 103 for ingesting content
102, preparing that content and packaging it for service by
an HTTP streaming server 104 by storing it into a content
store 110 that is accessible to both ingestion system 103 and
HTTP streaming server 104. As shown, system 100 might
also include an HTTP cache 106. In operation, a client 108,
such as an HTTP streaming client, sends requests 112 to
HTTP streaming server 104 and receives responses 114 from
HTTP streaming server 104 or HTTP cache 106. In each
case, elements shown in FIG. 1 might be implemented, at
least in part, in software, therein comprising program code
that is executed on a processor or other electronics.

US 9,432,433 B2

13

The content might comprise movies, audio, 2D planar
video, 3D video, other types of video, images, timed text,
timed metadata or the like. Some content might involve data
that is to be presented or consumed in a timed manner, such
as data for presenting auxiliary information (station identi-
fication, advertising, stock quotes, Flash™ sequences, etc.)
along with other media being played out. Other hybrid
presentations might also be used that combine other media
and/or go beyond merely audio and video.

As illustrated in FIG. 2, media blocks may be stored
within a block serving infrastructure 101(1), which could be,
for example, an HTTP server, a Content Delivery Network
device, an HTTP proxy, FTP proxy or server, or some other
media server or system. Block serving infrastructure 101(1)
is connected to a network 122, which could be, for example,
an Internet Protocol (“IP”) network such as the Internet. A
block-request streaming system client is shown having six
functional components, namely a block selector 123, pro-
vided with the metadata described above and performing a
function of selecting blocks or partial blocks to be requested
from among the plurality of available blocks indicated by
the metadata, a block requestor 124, that receives request
instructions from block selector 123 and performs the opera-
tions necessary to send a request for the specified block,
portions of a block, or multiple blocks, to block serving
infrastructure 101(1) over network 122 and to receive the
data comprising the block in return, as well as a block buffer
125, a buffer monitor 126, a media decoder 127 and one or
more media transducers 128 that facilitate media consump-
tion.

Block data received by block requestor 124 is passed for
temporary storage to block buffer 125, which stores the
media data. Alternatively, the received block data can be
stored directly into block buffer 125 as illustrated in FIG. 1.
Media decoder 127 is provided with media data by block
buffer 125 and performs such transformations on this data as
are necessary to provide suitable input to media transducers
128, which render the media in a form suitable for user or
other consumption. Examples of media transducers include
visual display devices such as those found in mobile phones,
computer systems or televisions, and might also include
audio rendering devices, such as speakers or headphones.

An example of a media decoder would be a function that
transforms data in the format described in the H.264 video
coding standard into analogue or digital representations of
video frames, such as a YUV-format pixel map with asso-
ciated presentation timestamps for each frame or sample.

Buffer monitor 126 receives information concerning the
contents of block buffer 125 and, based on this information
and possibly other information, provides input to block
selector 123, which is used to determine the selection of
blocks to request, as is described herein.

In the terminology used herein, each block has a “playout
time” or “duration” that represents the amount of time it
would take for the receiver to play the media included in that
block at normal speed. In some cases, the playout of the
media within a block may depend on having already
received data from previous blocks. In rare cases, the
playout of some of the media in a block may depend on a
subsequent block, in which case the playout time for the
block is defined with respect to the media that can be played
out within the block without reference to the subsequent
block, and the playout time for the subsequent block is
increased by the playout time of the media within this block
that can only playout after having received the subsequent
block. Since including media in a block that depends on
subsequent blocks is a rare case, in the remainder of this

10

15

20

25

30

35

40

45

50

55

60

65

14

disclosure we assume that media in one block does not
depend on subsequent blocks, but note that those skilled in
the art will recognize that this variant can be easily added to
the embodiments described below.

The receiver may have controls such as “pause”, “fast
forward”, “reverse”, etc. that may result in the block being
consumed by playout at a different rate, but if the receiver
can obtain and decode each consecutive sequence of blocks
in an aggregate time equal to or less than their aggregate
playout time excluding the last block in the sequence then
the receiver can present the media to the user without
stalling. In some descriptions herein, a particular position in
the media stream is referred to as a particular “time” in the
media, corresponding to the time that would have elapsed
between the beginning of the media playout and the time
when the particular position in the video stream is reached.
The time or position in a media stream is a conventional
concept. For example, where the video stream comprises 24
frames per second, the first frame could be said to have a
position or time of t=0.0 seconds and the 241st frame could
be said to have a position or time of t=10.0 seconds.
Naturally, in a frame-based video stream, position or time
need not be continuous, as each of the bits in the stream from
the first bit of the 241st frame to just before the first bit of
the 242nd frame might all have the same time value.

Adopting the above terminology, a block-request stream-
ing system (BRSS) comprises one or more clients that make
requests to one or more content servers (for example, HTTP
servers, FTP Servers, etc.). An ingestion system comprises
one or more ingestion processors, wherein an ingestion
processor receives content (in real-time or not), processes
the content for use by the BRSS and stores it into storage
accessible to the content servers, possibly also along with
metadata generated by the ingestion processor.

The BRSS also might contain content caches that coor-
dinate with the content servers. The content servers and
content caches might be conventional HTTP servers and
HTTP caches that receive requests for files or segments in
the form of HTTP requests that include a URL, and may also
include a byte range, in order to request less than all of the
file or segment indicated by the URL. The clients might
include a conventional HTTP client that makes requests of
HTTP servers and handles the responses to those requests,
where the HTTP client is driven by a novel client system that
formulates requests, passes them to the HTTP client, gets
responses from the HTTP client and processes those (or
storing, transforming, etc.) in order to provide them to a
presentation player for playout by a client device. Typically,
the client system does not know in advance what media is
going to be needed (as the needs might depend on user input,
changes in user input, etc.), so it is said to be a “streaming”
system in that the media is “consumed” as soon as it is
received, or shortly thereafter. As a result, response delays
and bandwidth constraints can cause delays in a presenta-
tion, such as causing a pause in a presentation as the stream
catches up to where the user is in consuming the presenta-
tion.

In order to provide for a presentation that is perceived to
be of good quality, a number of details can be implemented
in the BRSS, either at the client end, at the ingestion end, or
both. In some cases, the details that are implemented are
done in consideration of, and to deal with, the client-server
interface at the network. In some embodiments, both the
client system and the ingestion system are aware of the
enhancement, whereas in other embodiments, only one side
is aware of the enhancement. In such cases, the entire system
benefits from the enhancement even though one side is not

US 9,432,433 B2

15

aware of it, while in others, the benefit only accrues if both
sides are aware of it but when one side is not aware, it still
operates without failing.

As illustrated in FIG. 3, the ingestion system may be
implemented as a combination of hardware and software
components, according to various embodiments. The inges-
tion system may comprise a set of instructions that can be
executed to cause the system to perform any one or more of
the methodologies discussed herein. The system may be
realized as a specific machine in the form of a computer. The
system may be a server computer, a personal computer (PC),
or any system capable of executing a set of instructions
(sequential or otherwise) that specify actions to be taken by
that system. Further, while only a single system is illustrated,
the term “system” shall also be taken to include any collec-
tion of systems that individually or jointly execute a set (or
multiple sets) of instructions to perform any one or more of
the methodologies discussed herein.

The ingestion system may include the ingestion processor
302 (e.g., a central processing unit (CPU)), a memory 304
which may store program code during execution, and disk
storage 306, all of which communicate with each other via
a bus 300. The system may further include a video display
unit 308 (e.g., a liquid crystal display (LCD) or cathode ray
tube (CRT)). The system also may include an alphanumeric
input device 310 (e.g., a keyboard), and a network interface
device 312 for receiving content source and delivering
content store.

The disk storage unit 306 may include a machine-readable
medium on which may be stored one or more sets of
instructions (e.g., software) embodying any one or more of
the methodologies or functions described herein. The
instructions may also reside, completely or at least partially,
within the memory 304 and/or within the ingestion proces-
sor 302 during execution thereof by the system, with the
memory 304 and the ingestion processor 302 also consti-
tuting machine-readable media.

As illustrated in FIG. 4, the client system may be imple-
mented as a combination of hardware and software compo-
nents, according to various embodiments. The client system
may comprise a set of instructions that can be executed to
cause the system to perform any one or more of the
methodologies discussed herein. The system may be real-
ized as a specific machine in the form of a computer. The
system may be a server computer, a personal computer (PC),
or any system capable of executing a set of instructions
(sequential or otherwise) that specify actions to be taken by
that system. Further, while only a single system is illustrated,
the term “system” shall also be taken to include any collec-
tion of systems that individually or jointly execute a set (or
multiple sets) of instructions to perform any one or more of
the methodologies discussed herein.

The client system may include the client processor 402
(e.g., a central processing unit (CPU)), a memory 404 which
may store program code during execution, and disk storage
406, all of which communicate with each other via a bus
400. The system may further include a video display unit
408 (e.g., a liquid crystal display (LCD) or cathode ray tube
(CRT)). The system also may include an alphanumeric input
device 410 (e.g., a keyboard), and a network interface device
412 for sending requests and receiving responses.

The disk storage unit 406 may include a machine-readable
medium on which may be stored one or more sets of
instructions (e.g., software) embodying any one or more of
the methodologies or functions described herein. The
instructions may also reside, completely or at least partially,
within the memory 404 and/or within the client processor

10

15

20

25

30

35

40

45

50

55

60

65

16

402 during execution thereof by the system, with the
memory 404 and the client processor 402 also constituting
machine-readable media.

Usage of 3GPP File Format

The 3GPP File Format or any other file based on the ISO
base media file format, such as the MP4 file format or the
3GPP2 file format, may be used as the container format for
HTTP streaming with the following features. A segment
index may be included in each segment to signal time offsets
and byte ranges, such that the client can download the
appropriate pieces of files or media segments as required.
Global presentation timing of the entire media presentation
and local timing within each 3GP file or media segment may
be accurately aligned. Tracks within one 3GP file or media
segment may be accurately aligned. Tracks across represen-
tations may also be aligned by assigning each of them to the
global timeline such that switching across representation
may be seamless and joint presentation of media compo-
nents in different representations may be synchronous.

The file format may contain a profile for Adaptive Stream-
ing with the following properties. All movie data may be
contained in movie fragments—the “moov” box may not
contain any sample information. Audio and Video sample
data may be interleaved, with similar requirements as for the
progressive download profile as specified in TS26.244. The
“moov” box may be placed at the start of the file, followed
by fragment offset data, also referred to as a segment index,
containing offset information in time and byte ranges for
each fragment or at least a subset of fragments in the
containing segment.

It may also be possible for the Media Presentation
Description to reference files that follow the existing Pro-
gressive Download profile. In this case the client may use
the Media Presentation Description simply to select the
appropriate alternative version from amongst multiple avail-
able versions. Clients may also use HTTP partial get
requests with files compliant to the Progressive Download
profile to request subsets of each alternative version and
thereby implement a less efficient form of adaptive stream-
ing. In this case the different representations containing the
media in the progressive download profile may still adhere
to a common global timeline to enable seamless switching
across representations.

Advanced Methods Overview

In the following sections, methods for improved block-
request streaming systems are described. It should be under-
stood that some of these improvements can be used with or
without others of these improvements, depending on the
needs of the application. In the general operation, a receiver
makes requests of a server or other transmitter for specific
blocks or portions of blocks of data. Files, also called
segments, may contain multiple blocks and are associated
with one representation of a media presentation.

Preferably, indexing information, also called “segment
indexing” or “segment map”, is generated that provides a
mapping from playout or decode times to byte offsets of
corresponding blocks or fragments within a segment. This
segment indexing may be included within the segment,
typically at the beginning of the segment (at least some of
the segment map is at the beginning) and is often small. The
segment index may also be provided in a separate index
segment or file. Especially in cases where the segment index
is contained in the segment, the receiver may download
some or all of this segment map quickly and subsequently
use this to determine the mapping between time offsets and
corresponding byte positions of fragments associated with
those time offsets within the file.

US 9,432,433 B2

17

A receiver can use the byte offset to request data from the
fragments associated with particular time offsets, without
having to download all of the data associated with other
fragments not associated with the time offsets of interest. In
this way, the segment map or segment indexing can greatly
improve the ability of a receiver to directly access the
portions of the segment that are relevant to the current time
offsets of interest, with benefits including improved content
zapping times, ability to quickly change from one represen-
tation to another as network conditions vary, and reduced
wastage of network resources downloading media that is not
played out at a receiver.

In case switching from one representation (referred to
herein as the “switch-from” representation) to another rep-
resentation (referred to herein as the “switch-to” represen-
tation) is considered, the segment index may also be used to
identify the start time of a random access point in the
switch-to representation to identify the amount of data to be
requested in the switch-from representation to ensure that
seamless switching is enabled in a sense that media in the
switch-from representation is downloaded up to a presenta-
tion time such that the playout of the switch-to representa-
tion can start seamlessly from the random access point.

Those blocks represent segments of the video media or
other media that the requesting receiver needs in order to
generate the output for the user of the receiver. The receiver
of the media can be a client device, such as when the
receiver receives content from a server that transmits the
content. Examples include set-top boxes, computers, game
consoles, specially-equipped televisions, handheld devices,
specially-equipped mobile phones, or other client receivers.

Many advanced buffer management methods are
described herein. For example, a buffer management method
enables clients to request blocks of the highest media quality
that may be received in time to be played out with continuity.
A variable block size feature improves compression effi-
ciency. The ability to have multiple connections for trans-
mitting blocks to the requesting device while limiting the
frequency of the requests provides improved transmission
performance. Partially received blocks of data can be used
to continue the media presentation. A connection can be
re-used for multiple blocks without having to commit the
connection at the start to a particular set of blocks. Consis-
tency in the selection of servers from among multiple
possible servers by multiple clients is improved, which
reduces the frequency of duplicate content in nearby servers
and improves the probability that a server contains an entire
file. Clients can request media blocks based on metadata
(such as available media encodings) that are embedded in
the URLs for the files containing the media blocks. A system
can provide for calculation and minimization of the amount
of buffering time required before playout of the content can
begin without incurring subsequent pauses in media playout.
Available bandwidth can be shared among multiple media
blocks, adjusted as the playout time of each block
approaches, so that, if necessary, a greater share of available
bandwidth can be allocated towards the block with the
nearest playout time.

HTTP streaming may employ metadata. Presentation
level metadata includes, for example, stream duration, avail-
able encodings (bitrates, codecs, spatial resolutions, frame
rates, language, media types), pointers to stream metadata
for each encoding, and content protection (digital rights
management (DRM) information). Stream metadata may be
URLSs for the segment files.

Segment metadata may include byte range versus time
information for requests within a segment and identification

10

15

20

25

30

35

40

45

50

55

60

65

18

of Random Access Points (RAPS) or other seek points,
where some or all of this information may be part of a
segment indexing or segment map.

Streams may comprise multiple encodings of the same
content. Each encoding may then be broken into segments
where each segment corresponds to a storage unit or file. In
the case of HTTP, a segment is typically a resource that can
be referenced by a URL and the request of such URL results
in the return of the segment as the entity body of the request
response message. Segments may comprise multiple groups
of pictures (GoPs). Each GoP may further comprise multiple
fragments where the segment indexing provides time/byte-
offset information for each fragment, i.e., the unit of index-
ing is a fragment.

Fragments or portions of fragments may be requested
through parallel TCP connections to increase throughput.
This can mitigate problems that arise when sharing connec-
tions on a bottleneck link or when connections are lost due
to congestion, thus increasing overall speed and reliability of
delivery, which can substantially improve the speed and
reliability of the content zapping time. Bandwidth can be
traded for latency by over-requesting, but care should be
taken to avoid making requests too far into the future that
can increase the risk of starvation.

Multiple requests for segments on the same server may be
pipelined (making next request before current request com-
pletes) to avoid repetitious TCP startup delays. Requests for
consecutive fragments may be aggregated into one request.

Some CDNss prefer large files and may trigger background
fetches of an entire file from an origin server when first
seeing a range request. Most CDNs will, however, serve
range requests from cache if the data is available. It may
therefore be advantageous to have some portion of the client
requests be for a whole segment file. These requests can later
be cancelled if necessary.

Valid switch points may be seek points, specifically RAPs
for example, in the target stream. Different implementations
are possible such as fixed GoP structures or alignment of
RAPs across streams (based on the beginning of the media
or based on the GoPs).

In one embodiment, segments and GoPs may be aligned
across different rate streams. In this embodiment, GoPs may
be of variable size and may contain multiple fragments, but
fragments are not aligned between the different rate streams.

In some embodiments, file redundancy may be employed
to advantage. In these embodiments, an erasure code is
applied to each fragment to generate redundant versions of
the data. Preferably, the source formatting is not changed
due to the usage of FEC, and additional repair segments, for
example as dependent representation of the original repre-
sentation, containing FEC repair data are generated and
made available as an additional step in the ingestion system.
The client, which is able to reconstruct a fragment using
only source data for that fragment, may only request source
data for the fragment within the segment from the servers.
If the servers are unavailable or the connection to the servers
are slow, which can be determined either before or after the
request for source data, additional repair data may be
requested for the fragment from the repair segment, which
decreases the time to reliably deliver enough data to recover
the fragment, possibly using FEC decoding to use a com-
bination of received source and repair data to recover the
source data of the fragment. Furthermore, additional repair
data can be requested to allow recovery of the fragment if a
fragment becomes urgent, i.e., its playout time becomes
imminent, which increases the data share for that fragment
on a link but is more efficient than closing other connections

US 9,432,433 B2

19

on the link to free up bandwidth. This may also mitigate the
risk of starvation from the use of parallel connections.

The fragment format may be a stored stream of real time
transport protocol (RTP) packets with audio/video synchro-
nization achieved through real time transport control proto-
col RTCP.

The segment format may also be a stored stream of
MPEG-2 TS packets with audio/video synchronization
achieved MPEG-2 TS internal timing.

Using Signalling and/or Block Creation to Make Streaming
More Efficient

A number of features can be used or not, in a block-
request streaming system, to provide for improved perfor-
mance. Performance can be related to the ability to playout
a presentation without stalling, obtaining media data within
bandwidth constraints, and/or doing so within limited pro-
cessor resources at a client, server and/or ingestion system.
Some of these features will now be described.

Indexing within Segments

In order to formulate partial GET requests for Movie
Fragments, the client may be informed of the byte offset and
start time in decoding or presentation time of all media
components contained in the fragments within the file or
segment and also which fragments begin or contain a
Random Access Points (and so are suitable to be used as
switch points between alternative representations), wherein
this information is often referred to as the segment indexing
or segment map. The start time in decoding or presentation
time may be expressed directly or may be expressed as
deltas relative to a reference time.

This time and byte offset indexing information may
require at least 8 bytes of data per movie fragment. As an
example, for a two hour movie contained within a single file,
with 500 ms movie fragments, this would be a total of about
112 kilobytes of data. Downloading all of this data when
starting a presentation may result in a significant additional
startup delay. However, the time and byte offset data can be
encoded hierarchically, so that the client can quickly find a
small chunk of time and offset data relevant to the point in
the presentation at which it wishes to start. The information
may also be distributed within a segment such that some
refinement of the segment index may be located interleaved
with media data.

Note that if the a representation is segmented timewise
into multiple segments, the use of this hierarchical coding
may not be necessary, as the complete time and offset data
for each segment may already be quite small. For example,
if segments are one minute instead of two hours in the above
example, the time-byte offset indexing information is around
1 kilobyte of data, which can typically fit within a single
TCP/IP packet.

Different options are possible to add fragment time and
byte offset data to a 3GPP file:

First, the Movie Fragment Random Access Box
(“MFRA”) may be used for this purpose. The MFRA
provides a table, which may assist readers in finding random
access points in a file using movie fragments. In support of
this function, the MFRA incidentally contains the byte
offsets of MFRA boxes containing random access points.
The MFRA may be placed at or near the end of the file, but
this is not necessarily the case. By scanning from the end of
the file for a Movie Fragment Random Access Offset Box
and using the size information in it, one may be able to
locate the beginning of a Movie Fragment Random Access
Box. However, placing the MFRA at the end for HTTP
streaming requires typically at least 3-4 HTTP requests to
access the desired data: at least one to request the MFRA

20

25

30

40

45

55

20
from the end of the file, one to obtain the MFRA and finally
one to obtain the desired fragment in the file. Therefore,
placing at the beginning may be desirable as then the mfra
may be downloaded together with the first media data in a
single request. Also, using the MFRA for HTTP streaming
may be inefficient, since none of the information in the
“MFRA” is needed apart from the time and moof_offset and
specifying offsets instead of lengths may require more bits.

Second, the Item Location Box (“ILOC”) may be used.
The “ILOC” provides a directory of metadata resources in
this or other files, by locating their containing file, their
offset within that file, and their length. For example, a
system might integrate all the externally referenced meta-
data resources into one file, re-adjusting file offsets and file
references accordingly. However, the “ILOC” is intended for
giving the location of metadata so it may be difficult for this
to coexist with real metadata.

Last, and perhaps most suitable, is the specification of a
new box, referred to as Time Index Box (“TIDX”), specifi-
cally dedicated to the purpose of providing exact fragment
times or durations and byte offset in an efficient manner. This
is described in more detail in the next section. An alternative
box with the same functionalities may be the Segment Index
Box (“SIDX”). Herein, unless otherwise indicated, these
two might be interchangeable, as both boxes provide the
ability to provide exact fragment times or durations and byte
offset in an efficient manner. The difference between the
TIDX and the SIDX are provided below. It should be
apparent how to interchange the TIDX boxes and SIDX
boxes, as both boxes implement a segment index.
Segment Indexing

A segment has an identified start time and an identified
number of bytes. Multiple fragments may be concatenated
into a single segment and clients may issue requests that
identify the specific byte range within the segment that
correspond to the required fragment or subset of the frag-
ment. For example, when HTTP is used as the request
protocol, then the HTTP Range header may be used for this
purpose. This approach requires that the client has access to
a “segment index” of the segment that specifies the position
within the segment of the different fragments. This “segment
index” may be provided as part of the metadata. This
approach has the result that far fewer files need to be created
and managed compared to the approach where every block
is kept in a separate file. Management of the creation,
transfer and storage of very large numbers of files (which
could extend to many thousands for a 1 hour presentation,
say) can be complex and error-prone and so reduction in the
number of files represents an advantage.

If the client only knows the desired start time of a smaller
portion of a segment, it might request the whole file, then
read the file through to determine the appropriate playout
starting location. To improve bandwidth usage, segments
can include an index file as metadata, where the index file
maps the byte ranges of individual blocks with the time
ranges that the blocks correspond to, called segment index-
ing or segment map. This metadata can be formatted as
XML data or they may be binary, for example following the
atom and box structure of the 3GPP file format. The index-
ing can be simple, wherein the time and byte ranges of each
block are absolute relative to the start of the file, or they can
be hierarchical, wherein some blocks are grouped into parent
blocks (and those into grandparent blocks, etc.) and the time
and byte range for a given block is expressed relative to the
time and/or byte range of the block’s parent block.

US 9,432,433 B2

21

Example Indexing Map Structure

In one embodiment, the original source data for one
representation of a media stream may be contained in one or
more media files herein called a “media segment”, wherein
each media segment contains the media data used to play-
back a continuous time segment of the media, e.g., 5 minutes
of the media playback.

FIG. 6 shows an example overall structure of a media
segment. Within each segment, either at the beginning or
spread throughout the source segment, there can also be
indexing information, which comprises a time/byte-offset
segment map. The time/byte-offset segment map in one
embodiment may be a list of time/byte-offset pairs (T(0),
B(0), (T(1), B()), . . ., (TG), B@), . . ., (T),Bw),
wherein T(i-1) represents a start time within the segment for
playback of the i-th fragment of media relative to initial start
time of the media amongst all media segments, T(i) repre-
sents an end time for the i-th fragment (and thus the start
time for the next fragment), and the byte-offset B(i-1) is the
corresponding byte index of the beginning of the data within
this source segment where the i-th fragment of media starts
relative to the beginning of the source segment, and B(i) is
the corresponding end byte index of the i-th fragment (and
thus the index of the first byte of the next fragment). If the
segment contains multiple media components, then T(i) and
B(1) may be provided for each component in the segment in
a absolute way or they may be expressed relative to another
media component that serves a reference media component.

In this embodiment, the number of fragments in the
source segment is n, where n may vary from segment to
segment.

In another embodiment, the time offset in the segment
index for each fragment may be determined with absolute
start time of the first fragment and the durations of each
fragment. In this case, the segment index may document the
start time of the first fragment and the duration of the all
fragments that are included in the segment. The segment
index may also only document a subset of the fragments. In
that case, the segment index documents the duration of a
subsegment that is defined as one or more consecutive
fragments, ending either at the end of the containing seg-
ment, or at the beginning of the next subsegment.

For each fragment, there may also be a value that indi-
cates whether or not the fragment starts at or contains a seek
point, i.e., at a point wherein no media after that point
depends on any media previous to that point, and thus the
media from that fragment forward can be played out inde-
pendently of previous fragments. Seek points are, in general,
points in the media where playout can start independently of
all previous media. FIG. 6 also shows a simple example of
possible segment indexing for a source segment. In that
example, the time offset value is in units of milliseconds, and
thus the first fragment of this source segment starts 20
seconds from the beginning of the media, and the first
fragment has a playout time of 485 milliseconds. The byte
offset of the start of the first fragment is 0, and the byte offset
of the end of the first fragment/start of the second fragment
is 50,245, and thus the first fragment is of size 50,245 bytes.
If the fragment or the subsegment does not start with a
random access point, but the random access point is con-
tained in the fragment or subsegment, then the decoding
time or presentation time difference between the start time
and the actual RAP time may be given. This enables that in
case of switching to this media segment, the client can
accurately know the time until the switch from representa-
tion needs to be presented.

25

30

35

40

45

50

55

60

22

In addition to, or instead of, simple or hierarchical index-
ing, daisy-chained indexing and/or a hybrid indexing could
be used.

Because the sample durations for different tracks might
not be the same (for example, video samples might be
displayed for 33 ms, whereas an audio sample might last 80
ms), the different tracks in a Movie Fragment might not
begin and end at precisely the same time, i.e., the audio may
begin slightly before or slightly after the video, with the
opposite being true of the preceding fragment, to compen-
sate. To avoid ambiguity, the timestamps specified in the
time and byte offset data may be specified relative to a
particular track and this may be the same track for each
representation. Usually this will be the video track. This
allows the client to identify exactly the next video frame
when it is switching representations.

Care may be taken during presentation to maintain a strict
relationship between track timescales and presentation time,
to ensure smooth playout and maintenance of audio/video
synchronisation despite the above issue.

FIG. 7 illustrates some examples, such as a simple index
700 and a hierarchical index 702.

Two specific example of a box that contains a segment
map are provided below, one referred to as time index box
(‘TIDX’) and one referred to as (‘SIDX’). The definition
follows the box structure according to the ISO base media
file format. Other designs for such boxes to define similar
syntax and with the same semantics and functionality should
be apparent to the reader.

Time Index Box

Definition

Box Type: ‘tidx’

Container: File

Mandatory: No

Quantity: Any number zero or one

The Time Index Box may provide a set of time and byte
offset indices that associate certain regions of the file with
certain time intervals of the presentation. The Time Index
Box may include a targettype field, which indicates the type
of the referenced data. For example, a Time Index Box with
targettype “moof” provides an index to the Media Fragments
contained in the file in terms of both time and byte offsets.
A Time Index Box with targettype of Time Index Box can be
used to construct a hierarchical time index, allowing users of
the file to quickly navigate to the required portion of the
index.

The segment index may for example contain the follow-
ing syntax:

aligned(8) class TimeIndexBox
extends FullBox(“frai’) {
unsigned int(32) targettype;
unsigned int(32) time_ reference_ track_ID;
unsigned int(32) number_of elements;
unsigned int(64) first_element_ offset;
unsigned int(64) first_element_ time;
for(i=1; i <= number_of elements; i++)

bit (1) random__access_ flag;
unsigned int(31) length;
unsigned int(32) deltaT;

Semantics

targettype: is the type of the box data referenced by this
Time Index Box. This can be either Movie Fragment Header
(“moof”) or Time Index Box (“tidx™).

US 9,432,433 B2

23

time-reference_track_id: indicates the track with respect
to which the time offsets in this index are specified.

number_of_elements: the number of elements indexed by
this Time Index Box.

first_element_offset: The byte offset from the start of the
file of the first indexed element.

first_element_time: The start time of the first indexed
element, using the timescale specified in the Media Header
box of the track identified by the time_reference_track_id.

random_access_flag: One if the start time of the element
is a random access point. Zero otherwise.

length: The length of the indexed element in bytes

deltaT: The difference in terms of the timescale specified
in the Media Header box of the track identified by the
time_reference_track_id between the start time of this ele-
ment and the start time of the next element.
Segment Index Box

The Segment Index Box (‘sidx’) provides a compact
index of the movie fragments and other Segment Index
Boxes in a segment. There are two loop structures in the
Segment Index Box. The first loop documents the first
sample of the subsegment, that is, the sample in the first
movie fragment referenced by the second loop. The second
loop provides an index of the subsegment. The container for
‘sidx’ box is the file or segment directly.

Syntax

aligned(8) class SegmentIndexBox extends FullBox(‘sidx’, version, 0) {
unsigned int(32) reference_ track_ID;
unsigned int(16) track_ count;
unsigned int(16) reference__count;
for (i=1; i<= track__count; i++)

unsigned int(32)
if (version==0)

track__1D;

unsigned int(32)
} else
{

}

for(i=1; i <= reference__count; i++)

decoding_ time;

unsigned int(64) decoding_ time;

bit (1)

unsigned int(31)
unsigned int(32)
bit(1)

unsigned int(31)

reference_ type;
reference_ offset;
subsegment__duration;
contains_ RAP;

RAP_ delta_ time;

Semantics:

reference_track_ID provides the track_ID for the refer-
ence track.

track_count: the number of tracks indexed in the follow-
ing loop (1 or greater);

reference_count: the number of elements indexed by
second loop (1 or greater);

track_ID: the ID of a track for which a track fragment is
included in the first movie fragment identified by this index;
exactly one track_ID in this loop is equal to the reference_
track_ID;

decoding_time: the decoding time for the first sample in
the track identified by track_ID in the movie fragment
referenced by the first item in the second loop, expressed in
the timescale of the track (as documented in the timescale
field of the Media Header Box of the track);

reference_type: when set to 0, indicates that the reference
is to a movie fragment (‘moof”) box; when set to 1, indicates
that the reference is to a segment index (‘sidx”) box;

10

15

20

25

30

35

40

45

50

55

60

65

24

reference_offset: the distance in bytes from the first byte
following the containing Segment Index Box, to the first
byte of the referenced box;

subsegment_duration: when the reference is to Segment
Index Box, this field carries the sum of the subsegment_du-
ration fields in the second loop of that box; when the
reference is to a movie fragment, this field carries the sum
of'the sample durations of the samples in the reference track,
in the indicated movie fragment and subsequent movie
fragments up to either the first movie fragment documented
by the next entry in the loop, or the end of the subsegment,
whichever is earlier; the duration is expressed in the times-
cale of the track (as documented in the timescale field of the
Media Header Box of the track);

contains_ RAP: when the reference is to a movie frag-
ment, then this bit may be 1 if the track fragment within that
movie fragment for the track with track_ID equal to refer-
ence_track_ID contains at least one random access point,
otherwise this bit is set to 0; when the reference is to a
segment index, then this bit is set to 1 only if any of the
references in that segment index have this bit set to 1, and
0 otherwise;

RAP_delta_time: if contains_RAP is 1, provides the pre-
sentation (composition) time of a random access point
(RAP); reserved with the value O if contains_RAP is 0. The
time is expressed as the difference between the decoding
time of the first sample of the subsegment documented by
this entry and the presentation (composition) time of the
random access point, in the track with track_ID equal to
reference_track_ID.

Differences Between TIDX and SIDX

The SIDX and the SIDX provide the same functionality
with respect to indexing. The first loop of the SIDX provides
in addition global timing for the first movie fragment, but the
global timing may as well be contained in the movie
fragment itself, either absolute or relative to the reference
track.

The second loop of the SIDX implements the function-
ality of the TIDX. Specifically, the SIDX permits to have a
mixture of targets for the reference for each index referred
to by reference_type, whereas the TIDX only references
either only TIDX or only MOOF. The number_of_elements
in TIDX corresponds to the reference_count in SIDX, the
time-reference_track_id in TIDX corresponds to reference_
track_ID in SIDX, the tfirst_element_offset in TIDX corre-
sponds to the reference_offset in the first entry of the second
loop, the first_element_time in TIDX corresponds to the
decoding_time of the reference_track in the first loop, the
random_access_flag in TIDX corresponds to the contain-
s_RAP in the SIDX with the additional freedom that in the
SIDX the RAP may not necessarily be placed at the start of
the fragment, and therefore requiring the RAP_delta_ time,
the length in TIDX corresponds to the reference_offset in
SIDX and finally the deltaT in TIDX corresponds to the
subsegment_duration in SIDX. Therefore the functionalities
of the two boxes are equivalent.

Variable Block Sizing and Sub-GoP Blocks

For video media, the relationship between video encoding
structure and the block structure for requests can be impor-
tant. For example, if each block begins with a seek point,
such as a Random Access Point (“RAP”), and each block
represents an equal period of video time, then the position-
ing of at least some seek points in the video media is fixed
and seek points will occur at regular intervals within the
video encoding. As is well known to those of skill in the art
of video encoding, compression efficiency may be improved
if seek points are placed according to relationships between

US 9,432,433 B2

25

video frames, and in particular, if they are placed at frames
that have little in common with previous frames. This
requirement that blocks represent equal amounts of time
thus places a restriction on the video encoding, such that
compression may be sub-optimal.

It is desirable to allow the position of seek points within
a video presentation to be chosen by the video encoding
system, rather than requiring seek points at fixed positions.
Allowing the video encoding system to choose the seek
points results in improved video compression and thus a
higher quality of video media can be provided using a given
available bandwidth, resulting in an improved user experi-
ence. Current block-request streaming systems can require
that all blocks be of the same duration (in video time), and
that each block must begin with a seek point and this is thus
a disadvantage of existing systems.

A novel block-request streaming system that provides
advantages over the above is now described. In one embodi-
ment, the video encoding process of a first version of the
video component may be configured to choose the positions
of seek points in order to optimize compression efficiency,
but with a requirement that there is a maximum on the
duration between seek points. This latter requirement does
restrict the choice of seek points by the encoding process and
thus reduces compression efficiency. However, the reduction
in compression efficiency is small compared to that incurred
if regular fixed positions is required for the seek points,
provided the maximum on the duration between seek points
is not too small (for example, greater than around a second).
Furthermore, if the maximum on the duration between seek
points is a few seconds, then the reduction in compression
efficiency compared to completely free positioning of seek
points is generally very small.

In many embodiments, including this embodiment, it may
be that some RAPs are not seek points, i.e., there may be a
frame that is a RAP that is between two consecutive seek
points that is not chosen to be a seek point, for example
because the RAP is too close in time to the surrounding seek
points, or because the amount of media data between the
seek point preceding or following the RAP and the RAP is
too small.

The position of seek points within all other versions of the
media presentation may be constrained to be the same as the
seek points in a first (for example, the highest media data
rate) version. This does reduce the compression efficiency
for these other version compared to allowing the encoder
free choice of seek points.

The use of seek points typically required a frame to be
independently decodable, which generally results in a low
compression efficiency for that frame. Frames that are not
required to be independently decodable can be encoded with
reference to data in other frames, which generally increases
compression efficiency for that frame by an amount that is
dependent on the amount of commonality between the frame
to be encoded and the reference frames. Efficient choice of
seek point positioning preferentially chooses as a seek point
frame a frame that has low commonality with previous
frames and thereby minimizes the compression efficiency
penalty incurred by encoding the frame in a way that is
independently decodable.

However, the level of commonality between a frame and
potential reference frames is highly correlated across differ-
ent representations of the content, since the original content
is the same. As a result, the restriction of seek points in other
variants to be the same positions as the seek points in the first
variant does not make a large difference in compression
efficiency.

20

35

40

45

60

26

The seek point structure preferably is used to determined
the block structure. Preferably, each seek point determined
the start of a block, and there may be one or more blocks that
encompass the data between two consecutive seek points.
Since the duration between seek points is not fixed for
encoding with good compression, not all blocks are required
to have the same playout duration. In some embodiments,
blocks are aligned between versions of the content—that is,
if there is a block spanning a specific group of frames in one
version of the content, then there is a block spanning the
same group of frames in another version of the content. The
blocks for a given version of the content do not overlap and
every frame of the content is contained within exactly one
block of each version.

An enabling feature that allows the efficient use of vari-
able durations between seek points, and thus variable dura-
tion GoPs, is the segment indexing or segment map that can
be included in a segment or provided by other means to a
client, i.e., this is metadata associated with this segment in
this representation that may be provided comprising the start
time and duration of each block of the presentation. The
client may use this segment indexing data when determining
the block at which to start the presentation when the user has
requested that the presentation start at a particular point that
is within a segment. If such metadata is not provided, then
presentation can begin only at the beginning of the content,
or at a random or approximate point close to the desired
point (for example by choosing the starting block by divid-
ing the requested starting point (in time) by the average
block duration to give the index of the starting block).

In one embodiment, each block may be provided as a
separate file. In another embodiment, multiple consecutive
blocks may be aggregated into a single file to form a
segment. In this second embodiment, metadata for each
version may be provided comprising the start time and
duration of each block and the byte offset within the file at
which the block begins. This metadata may be provided in
response to an initial protocol request, i.e., available sepa-
rately from the segment or file, or may be contained within
the same file or segment as the blocks themselves, for
example at the beginning of the file. As will be clear to those
of skill in the art, this metadata may be encoded in a
compressed form, such as gzip or delta encoding or in binary
form, in order to reduce the network resources required to
transport the metadata to the client.

FIG. 6 shows an example of segment indexing where the
blocks are variable size, and where the scope of blocks is a
partial GoP, i.e., a partial amount of the media data between
one RAP and the next RAP. In this example, the seek points
are indicated by the RAP indicator, wherein a RAP indicator
value of 1 indicates that the block starts with or contains a
RAP, or seek point, and wherein a RAP indicator of 0
indicates that the block does not contain a RAP or seek
point. In this example, the first three blocks, i.e., bytes 0
through 157,033, comprise the first GoP, which has a pre-
sentation duration of 1.623 seconds, with a presentation time
running from 20 seconds into the content to 21.623 seconds.
In this example, the first of the three first blocks comprises
0.485 seconds of presentation time, and comprises the first
50,245 bytes of the media data in the segment. In this
example, blocks 4, 5, and 6 comprise the second GoP, blocks
7 and 8 comprise the third GoP, and blocks 9, 10 and 11
comprise the fourth GoP. Note that there may be other RAPs
in the media data that are not designated as seek points, and
are thus not signaled as RAPs in the segment map.

Referring again to FIG. 6, if the client or receiver wants
to access the content starting at time offset approximately 22

US 9,432,433 B2

27

seconds into the media presentation, then the client could
first use other information, such as the MPD described in
more detail later, to first determine that the relevant media
data is within this segment. The client can download the first
portion of the segment to obtain the segment indexing,
which in this case is just a few bytes, for example using an
HTTP byte range request. Using the segment indexing, the
client may determine that the first block that it should
download is the first block with a time offset that is at most
22 seconds and that starts with a RAP, i.e., is a seek point.
In this example, although block 5 has a time offset that is
smaller than 22 seconds, i.e., its time offset is 21.965
seconds, the segment indexing indicates that block 5 does
not start with a RAP, and thus instead, based on the segment
indexing, the client selects to download block 4, since its
start time is at most 22 seconds, i.e, its time offset is 21.623
seconds, and it starts with a RAP. Thus, based on the
segment indexing, the client will make an HTTP range
request starting at byte offset 157,034.

If segment indexing were not available then the client
might have to download all previous 157,034 bytes of data
before downloading this data, leading to a much longer
startup time, or channel zapping time, and to wasteful
downloading of data that is not useful. Alternatively, if
segment indexing were not available, the client might
approximate where the desired data starts within the seg-
ment, but the approximation might be poor and it may miss
the appropriate time and then requires to go backward which
again increases the start-up delay.

Generally, each block encompasses a portion of the media
data that, together with previous blocks, can be played out
by a media player. Thus, the blocking structure and the
signaling of the segment indexing blocking structure to the
client, either contained within the segment or provided to the
client through other means, can significantly improve the
ability of the client to provide fast channel zapping, and
seamless playout in the face of network variations and
disruptions. The support of variable duration blocks, and
blocks that encompass only portions of a GoP, as enabled by
the segment indexing, can significantly improve the stream-
ing experience. For example, referring again to FIG. 6 and
the example described above where the client wants to start
playout at approximately 22 seconds into the presentation,
the client may request, through one or more requests, the
data within block 4, and then feed this into media player as
soon as it is available to start playback. Thus, in this
example, the playout begins as soon as the 42,011 bytes of
block 4 are received at the client, thus enabling a fast
channel zapping time. If instead the client needed to request
the entire GoP before playout was to commence, the channel
zapping time would be longer, as this is 144,211 bytes of
data.

In other embodiments, RAPS or seek points may also
occur in the middle of a block, and there may be data in the
segment indexing that indicates where that RAP or seek
point is within the block or fragment. In other embodiments,
the time offset may be the decode time of the first frame
within the block, instead of the presentation time of the first
frame within the block.

FIGS. 8(a) and (b) illustrate an example of variable block
sizing an aligned seek point structure across a plurality of
versions or representations; FIG. 8(a) illustrates variable
block sizing with aligned seek points over a plurality of
versions of a media stream, while FIG. 8(4) illustrates
variable block sizing with non-aligned seek points over a
plurality of versions of a media stream.

20

30

35

40

45

50

55

60

65

28

Time is shown across the top in seconds, and the blocks
and seek points of the two segments for the two represen-
tations are shown from left to right in terms of their timing
with respect to this time line, and thus the length of each
block shown is proportional to its playout time and not
proportional to the number of bytes in the block. In this
example, the segment indexing for both segments of the two
representations would have the same time offsets for the
seek points, but potentially differing numbers of blocks or
fragments between seek points, and different byte offsets to
blocks due to the different amounts of media data in each
block. In this example, if the client wants to switch from
representation 1 to representation 2 at presentation time
approximately 23 seconds, then the client could request up
through block 1.2 in the segment for representation 1, and
start requesting the segment for representation 2 starting at
block 2.2, and thus the switch would occur at the presenta-
tion coinciding with seek point 1.2 in representation 1,
which is at the same time as seek point 2.2 in representation
2.

As should be clear from the foregoing, the block-request
streaming system described does not constrain the video
encoding to place seek points at specific positions within the
content and this mitigates one of the problems of existing
systems.

In the embodiments described above it is organized so that
the seek points for the various representations of the same
content presentation are aligned. However, in many cases, it
is preferable to relax this alignment requirement. For
example, it is sometimes the case that encoding tools have
been used to generate the representations that do not have
the capabilities to generate seek point aligned representa-
tions. As another example, the content presentation may be
encoded into different representations independently, with-
out no seek point alignment between different representa-
tions. As another example, a representation may contain
more seek points as it has lower rates and more commonly
it needs to be switched or it contains seek points to support
trick modes such fast forward or rewind or fast secking.
Thus, it is desirable to provide methods that make a block-
request streaming system capable of efficiently and seam-
lessly dealing with non-aligned seek points across the vari-
ous representations for a content presentation.

In this embodiment, the positions of seek points across
representations may not align. Blocks are constructed such
that a new block starts at each seek point, and thus there
might not be alignment between blocks of different versions
of the presentation. An example of such a non-aligned seck
point structure between different representations is shown in
FIG. 8(b). Time is shown across the top in seconds, and the
blocks and seek points of the two segments for the two
representations are shown from left to right in terms of their
timing with respect to this time line, and thus the length of
each block shown is proportional to its playout time and not
proportional to the number of bytes in the block. In this
example, the segment indexing for both segments of the two
representations would have potentially different time offsets
for the seek points, and also potentially differing numbers of
blocks or fragments between seek points, and different byte
offsets to blocks due to the different amounts of media data
in each block. In this example, if the client wants to switch
from representation 1 to representation 2 at presentation
time approximately 25 seconds, then the client could request
up through block 1.3 in the segment for representation 1, and
start requesting the segment for representation 2 starting at
block 2.3, and thus the switch would occur at the presenta-
tion coinciding with seek point 2.3 in representation 2,

US 9,432,433 B2

29

which is in the middle of the playout of block 1.3 in
representation 1, and thus some of the media for block 1.2
would not be played out (although the media data for the
frames of block 1.3 that are not played out may have to be
loaded into the receiver buffer for decoding other frames of
block 1.3 that are played out).

In this embodiment, the operation of block selector 123
may be modified such that whenever it is required to select
a block from a representation that is different from the
previously selected version, the latest block whose first
frame is not later than the frame subsequent to the last frame
of the last selected block is chosen.

This last described embodiment may eliminate the
requirement to constrain the positions of seek points within
versions other than the first version and thus increases
compression efficiency for these versions resulting in a
higher quality presentation for a given available bandwidth
and this an improved user experience. A further consider-
ation is that video encoding tools which perform the func-
tion of seek point alignment across multiple encodings
(versions) of the content may not be widely available and
therefore an advantage of this latest described embodiment
is that currently available video encoding tools may be used.
Another advantage is that encoding of different versions of
the content may proceed in parallel without any need for
coordination between encoding processes for the different
versions. Another advantage is that additional versions of
the content may be encoded and added to the presentation at
a later time, without having to provide the encoding tools
with the lists of specific seek point positions.

Generally, where pictures are encoded as groups of pic-
tures (GoPs), the first picture in the sequence can be a seek
point, but that need not always be the case.

Optimal Block Partitioning

One issue of concern in a block-request streaming system
is the interaction between the structure of encoded media,
for example video media, and the block structure used for
block requests. As will be known to those of skill in the art
of video encoding, it is often the case that the number of bits
required for the encoded representation of each video frame
varies, sometimes substantially, from frame to frame. As a
result the relationship between the amount of received data
and the duration of media encoded by that data may not be
straightforward. Furthermore, the division of media data into
block within a block-request streaming system adds a further
dimension of complexity. In particular, in some systems the
media data of a block may not be played out until the entire
block has been received, for example the arrangement of
media data within a block or dependencies between media
samples within a block of the use of erasure codes may result
in this property. As a result of these complex interactions
between block size and block duration and the possible need
to receive an entire block before beginning playout it is
common for client systems to adopt a conservative approach
wherein media data is buffered before playout begins. Such
buffering results in a long channel zapping time and thus a
poor user experience.

Pakzad describes “block partitioning methods™ which are
new and efficient methods to determine how to partition a
data stream into contiguous blocks based on the underlying
structure of the data stream and further describes several
advantages of these methods in the context of a streaming
system. A further embodiment of the invention to apply the
block partitioning methods of Pakzad to a block-request
streaming system is now described. This method may com-
prise arranging the media data to be presented into approxi-
mate presentation time order, such that the playout time of

20

30

40

45

30

any given element of media data (for example a video frame
or audio sample) differs from that of any adjacent media data
element by less than a provided threshold. The media data so
ordered may be considered a data stream in the language of
Pakzad and any of the methods of Pakzad applied to this data
stream identify block boundaries with the data stream. The
data between any pair of adjacent block boundaries is
considered a “Block” in the language of this disclosure and
the methods of this disclosure are applied to provide for
presentation of the media data within a block-request
streaming system. As will be clear to those of skill in the art
on reading this disclosure the several advantages of the
methods disclosed in Pakzad may then be realized in the
context of a block-request streaming system.

As described in Pakzad, the determination of the block
structure of a segment, including the blocks that encompass
partial GoPs or portions of more than on GoP, can impact the
ability of the client to enable fast channel zapping times. In
Pakzad, methods were provided that, given a target startup
time, would provide a block structure and a target download
rate that would ensure that if the client started downloading
the representation at any seek point and started playout after
the target startup time has elapsed then the playout would
continue seamlessly as long as at each point in time the
amount of data the client has downloaded is at least the
target download rate times the elapsed time from the begin-
ning of the download. It is advantageous for the client to
have access to the target startup time and the target down-
load rate, as this provides the client with a means to
determine when to start playing out the representation at the
earliest point in time, and allows the client to continue to
play out the representation as long as the download meets
the condition described above. Thus, the method described
later provides a means for including the target startup time
and the target download rate within the Media Presentation
Description, so that it can be used for the purposes described
above.

Media Presentation Data Model

FIG. 5 illustrates possible structures of the content store
shown in FIG. 1, including segments and media presentation
description (“MPD”) files, and a breakdown of segments,
timing, and other structure within an MPD file. Details of
possible implementations of MPD structures or files will
now be described. In many examples, the MPD is described
as a file, but non-file structures can be used as well.

As illustrated there, content store 110 holds a plurality of
source segments 510, MPDs 500 and repair segments 512.
An MPD might comprise period records 501, which in turn
might comprise representation records 502, that contain
segment information 503 such as references to initialization
segments 504 and media segments 505.

FIG. 9(a) illustrates an example metadata table 900, while
FIG. 9(b) illustrates an example of how an HTTP streaming
client 902 obtains metadata table 900 and media blocks 904
over a connection to an HTTP streaming server 906.

In the methods described herein, a “Media Presentation
Description” is provided that comprises information regard-
ing the representations of the media presentation that are
available to the client. Representations may be alternatives
in a sense that the client selects one out the different
alternatives, or they may be complementary in a sense that
the client selects several of the representations, each possi-
bly also from a set of alternatives, and presents them jointly.
The representations may advantageously be assigned to
groups, with the client programmed or configured to under-
stand that, for representations in one group, they are each
alternatives to each other, whereas representations from

US 9,432,433 B2

31

different groups are such that more than one representation
is to be presented jointly. In other words, if there are more
than one representation in a group, the client picks one
representation from that group, one representation from the
next group, etc., to form a presentation.

Information describing representations may advanta-
geously include details of the applied media codecs includ-
ing profiles and levels of those codecs which are required to
decode the representation, video frame rates, video resolu-
tion and data rates. The client receiving the Media Presen-
tation Description may use this information to determine in
advance whether a representation is suitable for decoding or
presentation. This represents an advantage because if the
differentiating information would only be contained in the
binary data of the representation it would be necessary to
request the binary data from all representations and to parse
and extract the relevant information in order to discover
information about its suitability. These multiple requests and
the parsing annex extraction of the data may take some time
which would result in a long start up time and therefore a
poor user experience.

Additionally, the Media Presentation Description may
comprise information restricting the client requests based on
the time of day. For example for a live service the client may
be restricted to requesting parts of the presentation which are
close to the “current broadcast time”. This represents an
advantage since for live broadcast it may be desirable to
purge data from the serving infrastructure for content that
was broadcast more than a provided threshold before the
current broadcast time. This may be desirable for the reuse
of storage resources within the serving infrastructure. This
may also be desirable depending on the type of service
offered, e.g., in some cases a presentation may be made
available only live because of a certain subscription model
of receiving client devices, whereas other media presenta-
tions may be made available live and on-demand, and other
presentations may be made available only live to a first class
of client devices, only on-demand to a second class of client
devices, and a combination of either live or on-demand to a
third class of client devices. The methods described in the
Media Presentation Data Model (below) allow the client to
be informed of such policies so that the client can avoid
making requests and adjusting the offerings to the user, for
data that may not be available in the serving infrastructure.
As an alternative, for example, the client may present a
notification to the user that this data is not available.

In a further embodiment of the invention the media
segments may be compliant to the ISO Base Media File
Format described in ISO/IEC 14496-12 or derived specifi-
cations (such as the 3GP file format described in 3GPP
Technical Specification 26.244). The Usage of 3GPP File
Format section (above) describes novel enhancements to the
ISO Base Media File Format permitting efficient use of the
data structures of this file format within a block-request
streaming system. As described in this reference, informa-
tion may be provided within the file permitting fast and
efficient mapping between time segments of the media
presentation and byte ranges within the file. The media data
itself may be structured according to the Movie Fragment
construction defined in ISO/IEC14496-12. This information
providing time and byte offsets may be structured hierar-
chically or as a single block of information. This information
may be provided at the start of the file. The provision of this
information using an efficient encoding as described in the
Usage of 3GPP File Format section results in the client being
able to retrieve this information quickly, for example using
an HTTP partial GET requests, in the case that the file

10

15

20

25

30

35

40

45

50

55

60

65

32

download protocol used by the block request streaming
system is HTTP, which results in a short start up, seek or
stream switch time and therefore in an improved user
experience.

The representations in a media presentation are synchro-
nized in a global timeline to ensure seamless switching
across representations, typically being alternatives, and to
ensure synchronous presentation of two ore more represen-
tations. Therefore, sample timing of contained media in
representations within an adaptive HTTP streaming media
presentation can be related to a continuous global timeline
across multiple segments.

A block of encoded media containing media of multiple
types, for example audio and video, may have different
presentation end times for the different types of media. In a
block request streaming system, such media blocks may be
played out consecutively in such a way that each media type
is played continuously and thus media samples of one type
from one block may be played out before media samples of
another type of the preceding block, which is referred to
herein as “continuous block splicing.” As an alternative,
such media blocks may be played out in such a way that the
earliest sample of any type of one block is played after the
latest sample of any type of the preceding block, which is
referred to herein as “discontinuous block splicing.” Con-
tinuous block splicing may be appropriate when both blocks
contain media from the same content item and the same
representation, encoded in sequence, or in other cases.
Typically, within one representation continuous block splic-
ing may be applied when splicing two blocks. This is
advantageous as existing encoding can be applied and
segmentation can be done without needing to align media
tracks at block boundaries. This is illustrated in FIG. 10,
where video stream 1000 comprises block 1202 and other
blocks, with RAPs such as RAP 1204.

Media Presentation Description

A media presentation may be viewed as a structured
collection of files on an HTTP-Streaming server. The HTTP-
Streaming client can download sufficient information to
present the streaming service to the user. Alternative repre-
sentations may comprise of one or more 3GP files or parts
of 3GP files conforming to the 3GPP file format or at least
to a well defined set of data structures that can be easily
converted from or to a 3GP file.

A media presentation may be described by a media
presentation description. The Media Presentation Descrip-
tion (MPD) may contain metadata that the client can use to
construct appropriate file requests, for example HTTP GET
requests, to access the data at appropriate time and to
provide the streaming service to the user. The media pre-
sentation description may provide sufficient information for
the HTTP streaming client to select the appropriate 3GPP
files and pieces of files. The units that are signalled to the
client to be accessible are referred to as segments.

Among others, a media presentation description may
contain elements and attributes as follows.
MediaPresentationDescription Element

An Flement encapsulating metadata used by the HTTP
Streaming Client to provide the streaming service to the end
user. The MediaPresentationDescription Element may con-
tain one or more of the following attributes and elements.

US 9,432,433 B2

33

Version: Version number for protocol to ensure extensi-
bility.

Presentationldentifier: Information such that the presen-
tation may be uniquely identified among other presentations.
May also contain private fields or names.

UpdateFrequency: Update frequency of the media pre-
sentation description, i.e. how often the client may reload the
actual media presentation description. If not present, the
media presentation may be static. Updating the media pre-
sentation may mean that the media presentation cannot be
cached.

MediaPresentationDescriptionURI: URI for dating the
media presentation description.

Stream: Describes the type of the Stream or media pre-
sentation: video, audio, or text. A video stream type may
contain audio and may contain text.

Service: Describes the service type with additional attri-
butes. Service types may be live and on-demand. This may
be used to inform the client that seeking and access beyond
some current time is not permitted.

MaximumClientPreBufferTime: A maximum amount of
time the client may pre-buffer the media stream. This timing
may differentiate streaming from progressive download if
the client is restricted to download beyond this maximum
pre-buffer time. The value may not be present indicating that
no restrictions in terms of pre-buffering may apply.

SafetyGuardlntervall.iveService: Information on the
maximum turn-around time of a live service at the server.
Provides an indication to the client what of information
already accessible at the current time. This information may
be necessary if the client and the server are expected to
operate on UTC time and no tight time synchronization is
provided.

TimeShiftBufferDepth: Information on how far back the
client may move in a live service relative to the current time.
By the extension of this depth, time-shift viewing and
catch-up services may be permitted without specific changes
in service provisioning.

LocalCachingPermitted: This flag indicates if the HTTP
Client can cache the downloaded data locally after it has
been played.

LivePresentationlnterval: Contains time intervals during
which the presentation may be available by specifying
StartTimes and EndTimes. The StartTime indicates the start
time of the services and the EndTime indicates the end-time
of the service. If the EndTime is not specified, then the end
time is unknown at current time and the UpdateFrequency
may ensure that the clients gets access to the end-time before
the actual end-time of the service.

OnDemandAvailabilityInterval: The presentation interval
indicates the availability of the service on the network.
Multiple presentation intervals may be provided. The HTTP
Client may not be able to access the service outside any
specified time window. By the provisioning of the OnDe-
mand Interval, additional time-shift viewing may be speci-
fied. This attribute may also be present for a live service. In
case it is present for a live service, the server may ensure that
the client can access the service as OnDemand Service
during all provided availability intervals. Therefore, the
LivePresentationlnterval may not overlap with any OnDe-
mandAvailabilitylnterval.

MPDFilelnfoDynamic: Describes the default dynamic
construction of files in the media presentation. More details
are provided below. The default specification on MPD level
may save unnecessary repetition if the same rules for several
or all alternative representations are used.

10

15

20

25

30

35

40

45

50

55

60

65

34

MPDCodecDescription: Describes the main default
codecs in the media presentation. More details are provided
below. The default specification on MPD level may save
unnecessary repetition if the same codecs for several or all
representations are used.

MPDMoveBoxHeaderSizeDoesNotChange: A flag to
indicate if the MoveBox Header changes in size among the
individual files within the entire media presentation. This
flag can be used to optimize the download and may only be
present in case of specific segment formats, especially those
for which segments contain the moov header.

FileURIPattern: A pattern used by the Client to generate
Request messages for files within the media presentation.
The different attributes permit generation of unique URIs for
each of the files within the media presentation. The base URI
may be an HTTP URL

Alternative Representation: Describes a list of represen-
tations.

AlternativeRepresentation Element:

An XML Element that encapsulates all metadata for one
representation. The AlternativeRepresentation Element may
contain the following attributes and elements.

RepresentationID: A unique ID for this specific Alterna-
tive Representation within the media presentation.

FilesInfoStatic: Provides an explicit list of the starting
times and the URI of all files of one alternative presentation.
The static provisioning of the list of files may provide the
advantage of an exact timing description of the media
presentation, but it may not be as compact, especially if the
alternative representation contains many files. Also, the file
names may have arbitrary names.

FilesInfoDynamic: Provides an implicit way to construct
the list of the starting times and the URI of one alternative
presentation. The dynamic provisioning of the list of files
may provide the advantage of a more compact representa-
tion. If only the sequence of starting times are provided, then
the timing advantages also hold here, but the file names are
to be constructed dynamically based in the FilePatternURI.
If only the duration of each segment is provided then the
representation is compact and may be suited for use within
live services, but the generation of the files may be governed
by global timing.

APMoveBoxHeaderSizeDoesNotChange: A flag that
indicates if the MoveBox Header changes in size among the
individual files within the Alternative Description. This flag
can be used to optimize the download and may only be
present in case of specific segment formats, especially those
for which segments contain the moov header.

APCodecDescription: Describes the main codecs of files
in the alternative presentation.

Media Description Element

MediaDescription: An element that may encapsulate all
metadata for the media that is contained in this representa-
tion. Specifically it may contain information about the tracks
in this alternative presentation as well as recommended
grouping of tracks, if applicable. The MediaDescription
Attribute contains the following attributes:

TrackDescription: An XML attribute that encapsulates all
metadata for the media that is contained in this representa-
tion. The TrackDescription Attribute contains the following
attributes:

TrackID: A unique ID for the track within the alternative
representation. This may be used in case the track is part of
a grouping description.

US 9,432,433 B2

35

Bitrate: The bitrate of the track.

TrackCodecDescription: An XML attribute that contains
all attributes on the codec used in this track. The TrackCo-
decDescription Attribute contains the following attributes:

MediaName: An attribute defining the media type. The
media types include “audio”, application”,
and “message”.

Codec: CodecType including profile and level.

LanguageTag: LanguageTag if applicable.

MaxWidth, MaxHeight: For video, Height and Width of
contained video in pixel.

SamplingRate: For audio, sampling rate

GroupDescription: An attribute that provides recommen-
dation to the client for appropriate grouping based on
different parameters.

GroupType: A type based on which the client may decide
how to group tracks.

The information in a media presentation description is
advantageously used by an HTTP streaming client to per-
form requests for files/segments or parts thereof at appro-
priate times, selecting the segments from adequate repre-
sentations that match its capabilities, for example in terms of
access bandwidth, display capabilities, codec capabilities,
and so on as well as preferences of the user such as language,
and so on. Furthermore, as the Media Presentation descrip-
tion describes representations that are time-aligned and
mapped to a global timeline, the client may also use the
information in the MPD during an ongoing media presen-
tation for initiating appropriate actions to switch across
representations, to present representations jointly or to seek
within the media presentation.

Signalling Segment Start Times

A representation may be split, timewise, into multiple
segments. An inter-track timing issue exists between the last
fragment of one segment and the next fragment of the next
segment. In addition, another timing issue exists in the case
that segments of constant duration are used.

Using the same duration for every segment may have the
advantage that the MPD is both compact and static. How-
ever, every segment may still begin at a Random Access
Point. Thus, either the video encoding may be constrained to
provide Random Access Points at these specific points, or
the actual segment durations may not be precisely as speci-
fied in the MPD. It may be desirable that the streaming
system does not place unnecessary restrictions on the video
encoding process and so the second option may be preferred.

Specifically, if the file duration is specified in the MPD as
d seconds, then the n-th file may begin with the Random
Access Point at or immediately following time (n-1)d.

In this approach, each file may include information as to
the exact start time of the segment in terms of global
presentation time. Three possible ways to signal this include:

(1) First, restrict the start time of each segment to the
exact timing as specified in the MPD. But then the media
encoder may not have any flexibility on the placement of the
IDR frames and may require special encoding for file
streaming.

(2) Second, add the exact start time to the MPD for each
segment. For the on-demand case, the compactness of MPD
may be reduced. For the live case, this may require a regular
update of the MPD, which may reduce scalability.

(3) Third, add the global time or the exact start time
relative to the announced start time of the representation or
the announced start time of the segment in the MPD to the
segment in a sense that the segment contains this informa-
tion. This might be added to a new box dedicated to adaptive
streaming. This box may also include the information as

25 <

video”,

2 <

text”,

10

15

20

25

30

35

40

45

50

55

60

65

36

provided by the “TIDX” or “SIDX” box. A consequence of
this third approach is that when seeking to a particular
position near the beginning of one of the segments the client
may, based on the MPD, choose the subsequent segment to
the one containing the required seek point. A simple
response in this case may be to move the seek point forward
to the start of the retrieved segment (i.e., to the next Random
Access Point after the seek point). Usually, Random Access
Points are provided at least every few seconds (and often
there is little encoding gain from making them less frequent)
and so in the worst case the seek point may be moved to be
a few seconds later than specified. Alternatively, the client
could determine in retrieving the header information for the
segment that the requested seek point is in fact in the
previous segment and request that segment instead. This
may result in an occasional increase in the time required to
execute the seek operation.

Accessible Segments List

The media presentation comprises a set of representations
each providing some different version of encoding for the
original media content. The representations themselves
advantageously contain information on the differentiating
parameters of the representation compared to other param-
eters. They also contain, either explicitly or implicitly, a list
of accessible segments.

Segments may be differentiated in time-less segments
containing metadata only and media segments that primarily
contain media data. The Media Presentation Description
(“MPD”) advantageously identifies and assigns different
attributes to each of the segments, either implicitly or
explicitly. Attributes advantageously assigned to each seg-
ment comprise the period during which a segment is acces-
sible, the resources and protocols through which the seg-
ments are accessible. In addition, media segments are
advantageously assigned attributes such as the start time of
the segment in the media presentation, and the duration of
the segment in the media presentation.

Where the media presentation is of type “on-demand”, as
advantageously indicated by an attribute in the media pre-
sentation description such as the OnDemandAvailability-
Interval, then the media presentation description typically
describes the entire segments and also provides indication
when the segments are accessible and when the segments are
not accessible. The start times of segments are advanta-
geously expressed relative to the start of the media presen-
tation such that two clients starting the play-back of the same
media presentations, but at different times, can use the same
media presentation description as well as the same media
segments. This advantageously improves the ability to cache
the segments.

Where the media presentation is of type “live”, as advan-
tageously indicated by an attribute in the media presentation
description such as the attribute Service, then the segments
comprising the media presentation beyond the actual time of
day are generally not generated or at least not accessible
despite the segments are fully described in the MPD. How-
ever, with the indication that the media presentation service
is of type “live”, the client may produce a list of accessible
segments along with the timing attributes for a client internal
time NOW in wall-clock time based on the information
contained in the MPD and the download time of the MPD.
The server advantageously operates in a sense that it makes
resource accessible such that a reference client operating
with the instance of the MPD at wall-clock time NOW can
access the resources.

Specifically, the reference client produces a list of acces-
sible segments along with the timing attributes for a client

US 9,432,433 B2

37

internal time NOW in wall-clock time based on the infor-
mation contained in the MPD and the download time of the
MPD. With time advancing, the client will use the same
MPD and will create a new accessible segment list that can
be used to continuously playout the media presentation.
Therefore, the server can announce segments in an MPD
before these segments are actually accessible. This is advan-
tageous, as it reduces frequent updating and downloading of
the MPD.

Assume that a list of segments, each with start time, tS, is
described either explicitly by a play list in elements such as
FilelnfoStatic or implicitly by using an element such as
FileInfoDynamic. An advantageous method to generate a
segment list using FileInfoDynamic is described below.
Based on this construction rule, the client has access to a list
of URIs for each representation, r, referred to herein as
FileURI(r,1), and a start time tS(r,i) for each segment with
index i.

The use of information in the MPD to create the acces-
sible time window of segments may be performed using the
following rules.

For a service of type “on-demand”, as advantageously
indicated by an attribute such as Service, if the current
wall-clock time at the client NOW is within any range of the
availability, advantageously expressed by an MPD element
such as OnDemandAvailabilitylnterval, then all described
segments of this On-Demand presentation are accessible. If
the current wall-clock time at the client NOW is outside any
range of the availability, then none of the described seg-
ments of this On-Demand presentation are accessible.

For a service of type “live”, as advantageously indicated
by an attribute such as Service, the start time tS(r,i) advan-
tageously expresses the time of availability in wall-clock
time. The availability start time may be derived as a com-
bination of the live service time of the event and some
turn-around time at the server for capturing, encoding, and
publishing. The time for this process may, for example, be
specified in the MPD, for example using a safety guard
interval tG specified for example specified as Safety-
GuardIntervalLiveService in the MPD. This would provide
the minimum difference between UTC time and the avail-
ability of the data on the HTTP streaming server. In another
embodiment, the MPD explicitly specifies the availability
time of the segment in the MPD without providing the
turn-around time as a difference between the event live time
and the turn-around time. In the following descriptions, it is
assumed that any global times are specified as availability
times. One or ordinary skill in art of live media broadcasting
can derive this information from suitable information in the
media presentation description after reading this description.

If the current wall-clock time at the client NOW is outside
any range of the live presentation interval, advantageously
expressed by an MPD element such as LivePresentationln-
terval, then none of the described segments of this live
presentation are accessible. If the current wall-clock time at
the client NOW is within the live presentation interval then
at least certain segments of the described segments of this
live presentation may be accessible.

The restriction of the accessible segments is governed by
the following values:

The wall-clock time NOW (as available to the client).

The permitted time-shift buffer depth tTSB for example
specified as TimeShiftBufferDepth in the media presentation
description.

A client at relative event time t; may only be allowed to
request segments with start times tS(r, 1) in the interval of
(NOW-tTSB) and NOW or in an interval such that the end

10

15

20

25

30

35

40

45

50

55

60

65

38

time of the segment with duration d is also included resulting
in an interval of (NOW-1TSB-d) and NOW.
Updating the MPD

In some embodiments, the server does not know in
advance the file or segment locator and start times of the
segments as for example the server location will change, or
the media presentation includes some advertisement from a
different server, or the duration of the media presentation is
unknown, or the server wants to obfuscate the locator for the
following segments.

In such embodiments, the server might only describe
segments that are already accessible or get accessible shortly
after this instance of the MPD has been published. Further-
more, in some embodiments, the client advantageously
consumes media close to the media described in the MPD
such that the user experiences the contained media program
as close as possible to the generation of the media content.
As soon as the client anticipates that it reaches the end of the
described media segments in the MPD, it advantageously
requests a new instance of the MPD to continue continuous
play-out in the expectation that the server has published a
new MPD describing new media segments. The server
advantageously generates new instances of the MPD and
updates the MPD such that clients can rely on the procedures
for continuous updates. The server may adapt its MPD
update procedures along with the segment generation and
publishing to the procedures of a reference client that acts as
a common client may act.

If a new instance of the MPD only describes a short time
advance, then the clients need to frequently request new
instances of MPD. This may result in scalability problems
and unnecessary uplink and downlink traffic due to unnec-
essary frequent requests.

Therefore, it is relevant on the one hand to describe
segments as far as possible into the future without neces-
sarily making them accessible yet, and on the other hand to
enable unforeseen updates in the MPD to express new server
locations, permit insertion of new content such as advertise-
ments or to provide changes in codec parameters.

Furthermore, in some embodiments, the duration of the
media segments may be small, such as in the range of several
seconds. The duration of media segments is advantageously
flexible to adjust to suitable segment sizes that can be
optimized to delivery or caching properties, to compensate
for end-to-end delay in live services or other aspects that
deal with storage or delivery of segments, or for other
reasons. Especially in cases where the segments are small
compared to the media presentation duration, then a signifi-
cant amount of media segment resources and start times
need to be described in the media presentation description.
As a result, the size of the media presentation description
may be large which may adversely affect the download time
of'the media presentation description and therefore affect the
start-up delay of the media presentation and also the band-
width usage on the access link. Therefore, it is advantageous
to not only permit the description of a list of media segments
using playlists, but also permit the description by using
templates or URL construction rules. Templates and URL
construction rules are used synonymously in this descrip-
tion.

In addition, templates may advantageously be used to
describe segment locators in live cases beyond the current
time. In such cases, updates of the MPD are per se unnec-
essary as the locators as well as the segment list are
described by the templates. However, unforeseen events
may still happen that require changes in the description of
the representations or the segments. Changes in an adaptive

US 9,432,433 B2

39

HTTP streaming media presentation description may be
needed when content from multiple different sources is
spliced together, for example, when advertising has been
inserted. The content from different sources may differ in a
variety of ways. Another reason, during live presentations, is
that it may be necessary to change the URLs used for content
files to provide for fail-over from one live origin server to
another.

In some embodiments, it is advantageous that if the MPD
is updated, then the updates to the MPD are carried out such
that the updated MPD is compatible with the previous MPD
in the following sense that the reference client and therefore
any implemented client generates an identically functional
list of accessible segments from the updated MPD for any
time up to the validity time of the previous MPD as it would
have done from the previous instance of the MPD. This
requirement ensures that (a) clients may immediately begin
using the new MPD without synchronisation with the old
MPD, since it is compatible with the old MPD before the
update time; and (b) the update time need not be synchro-
nised with the time at which the actual change to the MPD
takes place. In other words, updates to the MPD can be
advertised in advance and the server can replace the old
instance of the MPD once new information is available
without having to maintain different versions of the MPD.

Two possibilities may exist for media timing across an
MPD update for a set of representations or all representa-
tions. Either (a) the existing global timeline continues across
the MPD update (referred to herein as a “continuous MPD
update”), or (b) the current timeline ends and a new timeline
begins with the segment following the change (referred to
herein as a “discontinuous MPD update™).

The difference between these options may be evident
when considering that the tracks of a Media Fragment, and
hence of a Segment, generally do not begin and end at the
same time because of the differing sample granularity across
tracks. During normal presentation, samples of one track of
a fragment may be rendered before some samples of another
track of the previous fragment i.e. there is some kind of
overlap between fragments although there is may not be
overlap within a single track.

The difference between (a) and (b) is whether such
overlap may be enabled across an MPD update. When the
MPD update is because of splicing of completely separate
content, such overlap is generally difficult to achieve as the
new content needs new encoding to be spliced with the
previous content. It is therefore advantageous to provide the
ability for discontinuously updating the media presentation
by restarting the timeline for certain segments and possibly
also define a new set of representations after the update.
Also, if the content has been independently encoded and
segmented, then it is also avoided to adjust timestamps to fit
within the global timeline of the previous piece of content.

When the update is for lesser reasons such as only adding
new media segments to list of described media segments, or
if the location of the URLs is changed then overlap and
continuous updates may be allowed.

In the case of a discontinuous MPD update, the timeline
of' the last segment of the previous representation ends at the
latest presentation end time of any sample in the segment.
The timeline of the next representation (or, more accurately,
the first presentation time of the first media segment of the
new part of the media presentation, also referred to as new
period) typically and advantageously begins at this same
instant as the end of the presentation of the last period such
that seamless and continuous playout is ensured.

10

15

20

25

30

35

40

45

50

55

60

65

40

The two cases are illustrated in the FIG. 11.

It is preferred and advantageous to restrict MPD updates
to segment boundaries. The rationale for restricting such
changes or updates to segment boundaries is as follows.
First, changes to the binary metadata for each representation,
typically the Movie Header, may take place at least at
segment boundaries. Second, the Media Presentation
Description may contain the pointers (URLs) to the seg-
ments. In a sense the MPD is the “umbrella” data structure
grouping together all the segment files associated with the
media presentation. To maintain this containment relation-
ship, each segment may be referenced by a single MPD and
when the MPD is updated, it advantageously only updated
at a segment boundary.

Segment boundaries are not generally required to be
aligned, however for the case of content spliced from
different sources, and for discontinuous MPD updates gen-
erally, it makes sense to align the segment boundaries
(specifically, that the last segment of each representation
may end at the same video frame and may not contain audio
samples with a presentation start time later than the presen-
tation time of that frame). A discontinuous update may then
start a new set of representations at a common time instant,
referred to as period. The start time of the validity of this
new set of representations is provided, for example by a
period start time. The relative start time of each represen-
tation is reset to zero and the start time of the period places
the set of representations in this new period in the global
media presentation timeline.

For continuous MPD updates, segment boundaries are not
required to be aligned. Each segment of each alternative
representation may be governed by a single Media Presen-
tation Description and thus the update requests for a new
instances of the Media Presentation Description, generally
triggered by the anticipation that no additional media seg-
ments are described in the operating MPD, may take place
at different times depending on the consumed set of repre-
sentations including the set of representations that are antici-
pated to be consumed.

To support updates in MPD elements and attributes in a
more general case, any elements not only representations or
set of representations may be associated with a validity time.
So, if certain elements of the MDP need to be updated, for
example where the number of representations is changed or
the URL construction rules are changed, then these elements
may each be updated individually at specified times, by
providing multiple copies of the element with disjoint valid-
ity times.

Validity is advantageously associated with the global
media time, such that the described element associated with
a validity time is valid in a period of the global timeline of
the media presentation.

As discussed above, in one embodiment, the validity
times are only added to a full set of representations. Each full
set then forms a period. The validity time then forms the start
time of the period. In other words, in a specific case of the
using the validity element, a full set of representations may
be valid for a period in time, indicated by a global validity
time for a set of representations. The validity time of a set
of representations is referred to as a period. At the start of a
new period, the validity of the previous set representation is
expired and the new set of representations is valid. Note
again that the validity times of periods are preferably
disjoint.

As noted above, changes to the Media Presentation
Description take place at segment boundaries, and so for
each representation, the change an element actually takes

US 9,432,433 B2

41

place at the next segment boundary. The client may then
form a valid MPD including a list of segments for each
instant of time within the presentation time of the media.

Discontinuous block splicing may be appropriate in cases
where the blocks contain media data from different repre-
sentations, or from different content, for example from a
segment of content and an advertisement, or in other cases.
It may be required in a block request streaming system that
changes to presentation metadata take place only at block
boundaries. This may be advantageous for implementation
reasons because updating media decoder parameters within
a block may be more complex than updating them only
between blocks. In this case, it may advantageously be
specified that validity intervals as described above may be
interpreted as approximate, such that an element is consid-
ered valid from the first block boundary not earlier than the
start of the specified validity interval to the first block
boundary not earlier than the end of the specified validity
interval.

An example embodiment of the above describes novel
enhancements to a block-request streaming system is
described in the later presented section titled Changes to
Media Presentations.

Segment Duration Signalling

Discontinuous updates effectively divide the presentation
into a series of disjoint intervals, referred to as period. Each
period has its own timeline for media sample timing. The
media timing of representation within a period may advan-
tageously be indicated by specifying a separate compact list
of segment durations for each period or for each represen-
tation in a period.

An attribute, for example referred to as period start time,
associated to elements within the MPD may specify the
validity time of certain elements within the media presen-
tation time. This attribute may be added to any elements
(attributes that may get assigned a validity may be changed
to elements) of the MPD.

For discontinuous MPD updates the segments of all
representations may end at the discontinuity. This generally
implies at least that the last segment before the discontinuity
has a different duration from the previous ones. Signalling
segment duration may involve indicating either that all
segments have the same duration or indicating a separate
duration for every segment. It may be desirable to have a
compact representation for a list of segment durations which
is efficient in the case that many of them have the same
duration.

Durations of each segment in one representation or a set
of representations may advantageously be carried out with a
single string that specifies all segment durations for a single
interval from the start of the discontinuous update, i.e., the
start of the period until the last media segment described in
the MPD. In one embodiment, the format of this element is
a text string conforming to a production that contains a list
of segment duration entries where each entry contains a
duration attribute dur and an optional multiplier mult of the
attribute indicating that this representation contains <mult>
of the first entry segments of duration <dur> of the first
entry, then <mult> of the second entry segments of duration
<dur> of the second entry and so on.

Each duration entry specifies the duration of one or more
segments. [f the <dur> value is followed by the “*” character
and a number, then this number specifies the number of
consecutive segments with this duration, in seconds. If the
multiplier sign “*” is absent, the number of segments is one.
If the “*” is present with no following number, then all
subsequent segments have the specified duration and there

10

15

20

25

30

35

40

45

50

55

60

65

42

may be no further entries in the list. For example, the string
“30*” means all segments have a duration of 30 seconds.
The string “30*12 10.5” indicates 12 segments of duration
30 seconds, followed by one of duration 10.5 seconds.

If segment durations are specified separately for each
alternative representation, then the sum of segment dura-
tions within each interval may be the same for each repre-
sentation. In the case of video tracks, the interval may end
on the same frame in each alternative representation.

Those of ordinary skill in the art, upon reading this
disclosure, may find similar and equivalent ways to express
segment durations in a compact manner.

In another embodiment, the duration of a segment is
signalled to be constant for all segments in the representa-
tion except for the last one by a signal duration attribute
<duration>. The duration of the last segment before a
discontinuous update may be shorter as long as the start
point of the next discontinuous update or the start of a new
period is provided, which then implies the duration of the
last segment reaching up to the start of the next period.
Changes and Updates to Representation Metadata

Indicating changes of binary coded representation meta-
data such as movie header “moov” changes may be accom-
plished in different ways: (a) there may be one moov box for
all representation in a separate file referenced in the MPD,
(b) there may be one moov box for each alternative repre-
sentation in a separate file referenced in each Alternative
Representation, (c) each segment may contain a moov box
and is therefore self-contained, (d) there may be a moov Box
for all representation in one 3GP file together with MPD.

Note that in case of (a) and (b), the single ‘moov’ may be
advantageously combined with the validity concept from
above in a sense that more ‘moov’ boxes may be referenced
in an MPD as long as their validity is disjoint. For example,
with the definition of a period boundary, the validity of the
‘moov’ in the old period may expire with the start of the new
period.

In case of option (a), the reference to the single moov box
may be assigned a validity element. Multiple Presentation
headers may be allowed, but only one may be valid at a time.
In another embodiment, the validity time of the entire set of
representations in a period or the entire period as defined
above may be used as a validity time for this representation
metadata, typically provided as the moov header.

In case of option (b), the reference to the moov box of
each representation may be assigned a validity element.
Multiple Representation headers may be allowed, but only
one may be valid at a time. In another embodiment, the
validity time of the entire representation or the entire period
as defined above may be used as a validity time for this
representation metadata, typically provided as the moov
header.

In case of options (c), no signalling in the MPD may be
added, but additional signalling in the media stream may be
added to to indicate if the moov box will change for any of
the upcoming segments. This is further explained in the
below in the context of “Signaling Updates Within Segment
Metadata”.

Signaling Updates within Segment Metadata

To avoid frequent updates of the media presentation
description to get knowledge on potential updates, it is
advantageous to signal any such updates along with the
media segments. There may be provided an additional
element or elements within the media segments themselves
which may indicate that updated metadata such as the media
presentation description is available and has to be accessed
to within a certain amount of time to successfully continue

US 9,432,433 B2

43

creation of accessible segment lists. In addition, such ele-
ments may provide a file identifier, such as a URL, or
information that may be used to construct a file identifier, for
the updated metadata file. The updated metadata file may
include metadata equal to that provided in the original
metadata file for the presentation modified to indicate valid-
ity intervals together with additional metadata also accom-
panied by validity intervals. Such an indication may be
provided in media segments of all the available representa-
tions for a media presentation. A client accessing a block
request streaming system, on detecting such an indication
within a media block, may use the file download protocol or
other means to retrieve the updated metadata file. The client
is thereby provided with information about changes in the
media presentation description and the time at which they
will occur or have occurred. Advantageously, each client
requests the updated media presentation description only
once when such a changes occur rather than “polling” and
receiving the file many times for possible updates or
changes.

Examples of changes include addition or removal of
representations, changes to one or more representation such
as change in bit-rate, resolution, aspect ratio, included tracks
or codec parameters, and changes to URL construction rules,
for example a different origin server for an advertisement.
Some changes may affect only the initialization segment
such as the Movie Header (“moov”) atom associated with a
representation, whereas other changes may affect the Media
Presentation Description (MPD).

In the case of on-demand content, these changes and their
timing may be known in advance and could be signalled in
the Media Presentation Description.

For live content, changes may not be known until the
point at which they occur. One solution is to allow the Media
Presentation Description available at a specific URL to be
dynamically updated and to require clients to regularly
request this MPD in order to detect changes. This solution
has disadvantage in terms of scalability (origin server load
and cache efficiency). In a scenario with large numbers of
viewers, caches may receive many requests for the MPD
after the previous version has expired from cache and before
the new version has been received and all of these may be
forwarded to the origin server. The origin server may need
to constantly process requests from caches for each updated
version of the MPD. Also, the updates may not easily be
time-aligned with changes in the media presentation.

Since one of the advantages of HTTP Streaming is the
ability to utilise standard web infrastructure and services for
scalability, a preferred solution may involve only “static”
(i.e. cacheable) files and not rely on clients “polling” files to
see if they have changed.

Solutions are discussed and proposed to resolve the
update of metadata including the media presentation
description and binary representation metadata such as
“moov” atoms in an Adaptive HTTP Streaming media
presentation.

For the case of live content, the points at which the MPD
or “moov” may change might not be known when the MPD
is constructed. As frequent “polling” of the MPD to check
for updates should generally be avoided, for bandwidth and
scalability reasons, updates to the MPD may be indicated “in
band” in the segment files themselves, i.e., each media
segment may have the option to indicate updates. Depending
on the segment formats (a) to (c) from above, different
updating may be signalled.

20

25

30

40

45

44

Generally, the following indication may advantageously
be provided in a signal within the segment: an indicator that
the MPD may be updated before requesting the next seg-
ment within this representation or any next segment that has
start time greater than the start time of the current segment.
The update may be announced in advance indicating that the
update need only to happen at any segment later than the
next one. This MPD update may also be used to update
binary representation metadata such as Movie Headers in
case the locator of the media segment is changed. Another
signal may indicate that with the completion of this segment,
no more segments that advance time should be requested.

In case segments are formatted according to the segment
format (c), i.e., each media segment may contain self-
initialising metadata such as the movie header, then yet
another signal may be added indicating that the subsequent
segment contains an updated Movie Header (moov). This
advantageously allows the movie header to be included in
the segment, but the Movie Header need only be requested
by the client if the previous segment indicates a Movie
Header Update or in the case of seeking or random access
when switching representations. In other cases, the client
may issue a byte range request to the segment that excludes
the movie header from the download, therefore advanta-
geously saving bandwidth.

In yet another embodiment, if the MPD Update indication
is signalled, then the signal may also contain a locator such
as URL for the updated Media Presentation Description. The
updated MPD may describe the presentation both before and
after the update, using the validity attributes such as a new
and old period in case of discontinuous updates. This may
advantageously be used to permit time-shift viewing as
described further below but also advantageously allows the
MPD update to be signalled at any time before the changes
it contains take effect. The client may immediately down-
load the new MPD and apply it to the ongoing presentation.

In a specific realization, the signalling of the any changes
to the media presentation description, the moov headers or
the end of presentation may be contained in a streaming
information box that is formatted following the rules of the
segment format using the box structure of the ISO base
media file format. This box may provide a specific signal for
any of the different updates.

Streaming Information Box
Definition

Box Type: ‘sinf’
Container: None
Mandatory: No

Quantity: Zero or one.

The Streaming Information Box contains information
about the streaming presentation of which the file is a part.

Syntax

aligned(8) class StreamingInformationBox
extends FullBox(‘sinf”) {
unsigned int(32) streaming_ information_ flags;
/// The following are optional fields
string mpd__location

}

US 9,432,433 B2

45
Semantics
streaming_information_flags contains the logical OR of
zero or more of the following:

0x00000001 Movie Header update follows
0x00000002 Presentation Description update
0x00000004 End-of-presentation

mpd_location is present if and only if the Presentation
Description update flags is set and provides a Uniform
Resource Locator for the new Media Presentation Descrip-
tion.

Example Use Case for MPD Updates for Live Services

Suppose a service provider wants to provide a live foot-
ball event using the enhanced block-request streaming
described herein. Perhaps millions of users might want to
access the presentation of the event. The live event is
sporadically interrupted by breaks when a time out is called,
or other lull in the action, during which advertisements
might be added. Typically, there is no or little advance notice
of the exact timing of the breaks.

The service provider might need to provider redundant
infrastructure (e.g., encoders and servers) to enable a seam-
less switch-over in case any of the components fail during
the live event.

Suppose a user, Anna, accesses the service on a bus with
her mobile device, and the service is available immediately.
Next to her sits another user, Paul, who watches the event on
his laptop. A goal is scored and both celebrate this event at
the same time. Paul tells Anna that the first goal in the game
was even more exciting and Anna uses the service so that she
can view the event 30 minutes back in time. After having
seen the goal, she goes back to the live event.

To address that use case, the service provider should be
able to update the MPD, signal to the clients that an updated
MPD is available, and permit clients to access the streaming
service such that it can present the data close to real-time.

Updating of the MPD is feasible in an asynchronous
manner to the delivery of segments, as explained herein
elsewhere. The server can provide guarantees to the receiver
that an MPD is not updated for some time. The server may
rely on the current MPD. However, no explicit signaling is
needed when the MPD is updated before the some minimum
update period.

Completely synchronous playout is hardly achieved as
client may operate on different MPD update instances and
therefore, clients may have drift. Using MPD updates, the
server can convey changes and the clients can be alerted to
changes, even during a presentation. In-band signaling on a
segment-by-segment basis can be used to indicate the update
of the MPD, so updates might be limited to segment
boundaries, but that should be acceptable in most applica-
tions.

An MPD element can be added that provides the publish-
ing time in wall-clock time of the MPD as well as an
optional MPD update box that is added at the beginning of
segments to signal that an MPD update is required. The
updates can be done hierarchically, as with the MPDs.

The MPD “Publish time” provides a unique identifier for
the MPD and when the MPD was issued. It also provides an
anchor for the update procedures.

The MPD update box might be found in the MPD after the
“styp” box, and defined by a Box Type="mupe”, needing no
container, not being mandatory and having a quantity of zero
or one. The MPD update box contains information about the
media presentation of which the segment is a part.

10

15

20

25

30

35

40

45

50

55

60

65

46

Example syntax is as follows:

aligned(8) class MPDUpdateBox
extends FullBox(‘mupe’) {
unsigned int(3) mpd information flags;
unsigned int(1) new-location flag;
unsigned int(28) latest__mpd_ update time;
/// The following are optional fields
string mpd__location

The semantics of the various objects of the class MPDUp-
dateBox might be as follows:
mpd_information_flags: the logical OR of zero or more of
the following:

0x00 Media Presentation Description update now
0x01 Media Presentation Description update ahead
0x02 End-of-presentation

0x03-0x07 Reserved

new_location flag: if set to 1, then the new Media Pre-
sentation Description is available at a new location
specified in mpd_location.
latest_mpd_update time: specifies the time (in ms) by
when the MPD update is necessary relative to the MPD
issue time of the latest MPD. The client may choose to
update the MPD any time between now.

mpd_location: is present if and only if the new_location_
flag is set and if so, mpd_location provides a Uniform
Resource Locator for the new Media Presentation
Description.

If the bandwidth used by updates is an issue, the server
may offer MPDs for certain device capabilities such that
only these parts are updated.

Time-shift Viewing and Network PVR

When time-shift viewing is supported, it may happen that
for the life-time of the session two or more MPDs or Movie
Headers are valid. In this case by updating the MPD when
necessary, but adding the validity mechanism or the period
concept, a valid MPD may exist for the entire time-window.
This means that server may ensure that any MPD and Movie
header are announced for any period of time that is within
the valid time-window for time-shift viewing. It is up to the
client to ensure that its available MPD and metadata for its
current presentation time is valid. Migration of a live session
to a network PVR session using only minor MPD updates
may also be supported.

Special Media Segments

An issue when the file format of ISO/IEC 14496-12 is
used within a block request streaming system is that, as
described in the foregoing, it may be advantageous to store
the media data for a single version of the presentation in
multiple files, arranged in consecutive time segments. Fur-
thermore it may be advantageous to arrange that each file
begins with a Random Access Point. Further it may be
advantageous to choose the positions of the seek points
during the video encoding process and to segment the
presentation into multiple files each beginning with a seek
point based on the choice of seek points that was made
during the encoding process, wherein each Random Access
Point may or may not be placed at the beginning of a file but
wherein each file begins with a Random Access Point. In one
embodiment with the properties described above, the pre-
sentation metadata, or Media Presentation Description, may
contain the exact duration of each file, where duration is

US 9,432,433 B2

47

taken for example to mean the different between the start
time of the video media of a file and the start time of the
video media of the next file. Based on this information in the
presentation metadata the client is able to construct a map-
ping between the global timeline for the media presentation
and the local timeline for the media within each file.

In another embodiment, the size of the presentation meta-
data may be advantageously reduced by specifying instead
that every file or segment have the same duration. However
in this case and where media files are constructed according
to the method above the duration of each file may not be
exactly equal to the duration specified in the media presen-
tation description because a Random Access Point may not
exist at the point which is exactly the specified duration from
the start of the file.

A further embodiment of the invention to provide for
correct operation of the block-request streaming system
despite the discrepancy mentioned above is now described.
In this method there may be provided an element within each
file which specifies the mapping of the local timeline of the
media within the file (by which is meant the timeline starting
from timestamp zero against which the decoding and com-
position timestamps of the media samples in the file are
specified according to ISO/IEC 14496-12) to the global
presentation timeline. This mapping information may com-
prise a single timestamp in global presentation time that
corresponds to the zero timestamp in the local file timeline.
The mapping information may alternatively comprise an
offset value that specifies the difference between the global
presentation time corresponding to the zero timestamp in
local file timeline and the global presentation time corre-
sponding to the start of the file according to the information
provided in the presentation metadata.

Example for such boxes may for example be the track
fragment decode time (‘tfdt’) box or the track fragment
adjustment box (‘tfad’) together with the track fragment
media adjustment (‘tfma’) box.

Example Client Including Segment List Generation

An example client will now be described. It might be used
as a reference client for the server to ensure proper genera-
tion and updates of the MPD.

An HTTP streaming client is guided by the information
provided in the MPD. It is assumed that the client has access
to the MPD that it received at time T, i.e., the time it was able
to successfully receive an MPD. Determining successful
reception may include the client obtaining an updated MPD
or the client verifying that the MPD has not been updated
since the previous successful reception.

An example client behaviour is introduced. For providing
a continuous streaming service to the user, the client first
parses the MPD and creates a list of accessible segments for
each representation for the client-local time at a current
system time, taking into account segment list generation
procedures as detailed below possibly using play-lists or
using URL construction rules. Then, the client selects one or
multiple representations based on the information in the
representation attributes and other information, e.g., avail-
able bandwidth and client capabilities. Depending on group-
ing representations may be presented standalone or jointly
with other representations.

For each representation, the client acquires the binary
metadata such as the “moov” header for the representation,
if present, and the media segments of the selected represen-
tations. The client accesses the media content by requesting
segments or byte ranges of segments, possibly using the
segment list. The client may initially buffer media before
starting the presentation and, once the presentation has

10

15

20

25

30

35

40

45

50

55

60

65

48

started, the client continues consuming the media content by
continuously requesting segments or parts of segments tak-
ing into account the MPD update procedures.

The client may switch representations taking into account
updated MPD information and/or updated information from
its environment, e.g., change of available bandwidth. With
any request for a media segment containing a random access
point, the client may switch to a different representation.
When moving forward, i.e., the current system time (re-
ferred to as the “NOW time” to represent the time relative
to the presentation) advancing, the client consumes the
accessible segments. With each advance in the NOW time,
the client possibly expands the list of accessible segments
for each representation according to the procedures specified
herein.

If the end of the media presentation is not yet reached and
if the current playback time gets within a threshold for which
the client anticipates to run out media of the media described
in the MPD for any consuming or to be consumed repre-
sentation, then the client may request an update of the MPD,
with a new fetch time reception time T. Once received, the
client then takes into account the possibly updated MPD and
the new time T in the generation of the accessible segment
lists. FIG. 29 illustrates a procedure for live services at
different times at the client.

Accessible Segment List Generation

Assume that the HTTP streaming client has access to an
MPD and may want to generate an accessible segment list
for a wall-clock time NOW. The client is synchronised to a
global time reference with certain precision, but advanta-
geously no direct synchronization to the HTTP streaming
server is required.

The accessible segment list for each representation is
preferably defined as a list pair of a segment start time and
segment locator where the segment start time may be
defined as being relative to the start of the representation
without loss of generality. The start of the representation
may be aligned with the start of a period or if this concept
is applied. Otherwise, the representation start can be at the
start of the media presentation.

The client uses URL construction rules and timing as, for
example, defined further herein. Once a list of described
segments is obtained, this list is further restricted to the
accessible ones, which may be a subset of the segments of
the complete media presentation. The construction is gov-
erned by the current value of the clock at the client NOW
time. Generally, segments are only available for any time
NOW within a set of availability times. For times NOW
outside this window, no segments are available. In addition,
for live services, assume the some time checktime provides
information on how far into the future the media is
described. The checktime is defined on the MPD-docu-
mented media time axis; when the client’s playback time
reaches checktime, it advantageously requests a new MPD.

; when the client’s playback time reaches checktime, it
advantageously requests a new MPD.

Then, the segment list is further restricted by the check-
time together with the MPD attribute TimeShiftBufferDepth
such that only media segments available are those for which
the sum of the start time of the media segment and the
representation start time falls in the interval between NOW
minus timeShiftBufferDepth minus the duration of the last
described segment and the smaller value of either checktime
or NOW.

Scalable Blocks

Sometimes available bandwidth falls so low that the block

or blocks currently being received at a receiver become

US 9,432,433 B2

49

unlikely to be completely received in time to be played out
without pausing the presentation. The receiver might detect
such situations in advance. For example, the receiver might
determine that it is receiving blocks encoding 5 units of
media every 6 units of time, and has a buffer of 4 units of
media, so that the receiver might expect to have to stall, or
pause, the presentation, about 24 units of time later. With
sufficient notice, the receiver can react to such a situation by,
for example, abandoning the current stream of blocks and
start requesting a block or blocks from a different represen-
tation of the content, such as one that uses less bandwidth
per unit of playout time. For example, if the receiver
switched to a representation where blocks encoded for at
least 20% more video time for the same size blocks, the
receiver might be able to eliminate the need to stall until the
bandwidth situation improved.

However, it might be wasteful to have the receiver
entirely discard the data already received from the aban-
doned representation. In an embodiment of a block-stream-
ing system described herein, the data within each block can
be encoded and arranged in such a way that certain prefixes
of the data within the block can be used to continue the
presentation without the remainder of the block having been
received. For example, the well-known techniques of scal-
able video encoding may be used. Examples of such video
encoding methods include H.264 Scalable Video Coding
(SVC) or the temporal scalability of H.264 Advanced Video
Coding (AVC). Advantageously, this method allows the
presentation to continue based on the portion of a block that
has been received even when reception of a block or blocks
might be abandoned, for example due to changes in the
available bandwidth. Another advantage is that a single data
file may be used as the source for multiple different repre-
sentations of the content. This is possible, for example, by
making use of HTTP partial GET requests that select the
subset of a block corresponding to the required representa-
tion.

One improvement detailed herein is an enhanced seg-
ment, a scalable segment map. The scalable segment map
contains the locations of the different layers in the segment
such that the client can access the parts of the segments
accordingly and extract the layers. In another embodiment,
the media data in the segment is ordered such that the quality
of the segment is increasing while downloading the data
gradually from the beginning of the segment. In another
embodiment, the gradual increase of the quality is applied
for each block or fragment contained in the segment, such
that the fragment requests can be done to address the
scalable approach.

FIG. 12 is a figure showing an aspect of scalable blocks.
In that figure, a transmitter 1200 outputs metadata 1202,
scalable layer 1 (1204), scalable layer 2 (1206), and scalable
layer 3 (1208), with the latter being delayed. A receiver 1210
can then use metadata 1202, scalable layer 1 (1204), and
scalable layer 2 (1206) to present media presentation 1212.
Independent Scalability Layers

As explained above, it is undesirable for a block-request
streaming system to have to stall when the receiver is unable
to receive the requested blocks of a specific representation of
the media data in time for its playout, as that often creates
a poor user experience. Stalls can be avoided, reduced or
mitigated by restricting a data rate of the representations
chosen to be much less than the available bandwidth, so that
it becomes very unlikely that any given portion of the
presentation would not be received in time, but this strategy
has the disadvantage that the media quality is necessarily
much lower than could in principle be supported by the

5

10

15

20

25

30

35

40

45

50

55

60

65

50

available bandwidth. A lower quality presentation than is
possible also can be interpreted as a poor user experience.
Thus, the designer of a block-request streaming system is
faced with a choice in the design of the client procedures,
programming of the client or configuration of hardware, to
either request a content version that has a much lower data
rate than the available bandwidth, in which case the user
may suffer poor media quality, or to request a content
version that has a data rate close to the available bandwidth,
in which case the user may suffer a high probability of
pauses during the presentation as the available bandwidth
changes.

To handle such situations, the block-streaming systems
described herein might be configured to handle multiple
scalability layers independently, such that a receiver can
make layered requests and a transmitter can respond to
layered requests.

In such embodiments, the encoded media data for each
block may be partitioned into multiple disjoint pieces,
referred to herein as “layers”, such that a combination of
layers comprises the whole of the media data for a block and
such that a client that has received certain subsets of the
layers may perform decoding and presentation of a repre-
sentation of the content. In this approach, the ordering of the
data in the stream is such that contiguous ranges are increas-
ing in the quality and the metadata reflects this.

An example of a technique that may be used to generate
layers with the property above is the technique of Scalable
Video Coding for example as described in ITU-T Standards
H.264/SVC. Another example of a technique that may be
used to generate layers with the property above is the
technique of temporal scalability layers as provided in
ITU-T Standard H.264/AVC.

In these embodiments, metadata might be provided in the
MPD or in the segment itself that enables the construction of
requests for individual layers of any given block and/or
combinations of layers and/or a given layer of multiple
blocks and/or a combination of layers of multiple blocks.
For example, the layers comprising a block might be stored
within a single file and metadata might be provided speci-
fying the byte ranges within the file corresponding to the
individual layers.

A file download protocol capable of specifying byte
ranges, for example HTTP 1.1, may be used to request
individual layers or multiple layers. Furthermore, as will be
clear to one of skill in the art on reviewing this disclosure,
the techniques described above pertaining to the construc-
tion, request and download of blocks of variable size and
variable combinations of blocks may be applied in this
context as well.

Combinations

A number of embodiments are now described which may
be advantageously employed by a block-request streaming
client in order to achieve an improvement in the user
experience and/or a reduction in serving infrastructure
capacity requirements compared to existing techniques by
use of media data partitioned into layers as described above.

In a first embodiment, the known techniques of a block
request streaming system may be applied with the modifi-
cation that different versions of the content are in some cases
replaced by different combinations of the layers. That is to
say that where an existing system might provide two distinct
representations of the content the enhanced system
described here might provide two layers, where one repre-
sentation of the content in the existing system is similar in
bit-rate, quality and possibly other metrics to the first layer
in the enhanced system and the second representation of the

US 9,432,433 B2

51

content in the existing system is similar in bit-rate, quality
and possibly other metrics to the combination of the two
layers in the enhanced system. As a result the storage
capacity required within the enhanced system is reduced
compared to that required in the existing system. Further-
more, whereas the clients of existing system may issue
requests for blocks of one representation or the other rep-
resentation, clients of the enhanced system may issue
requests for either the first or both layers of a block. As a
result, the user experience in the two systems is similar.
Furthermore, improved caching is provided as even for
different qualities common segments are used which are
then cached with higher likelihood.

In a second embodiment, a client in an enhanced block-
request streaming system employing the method of layers
now described may maintain a separate data buffer for each
of several layers of the media encoding. As will be clear to
those of skill in the art of data management within client
devices, these “separate” buffers may be implemented by
allocation of physically or logically separate memory
regions for the separate buffers or by other techniques in
which the buffered data is stored in a single or multiple
memory regions and the separation of data from different
layers is achieved logically through the use of data structures
which contain references to the storage locations of data
from the separate layers and so in the follow the term
“separate buffers” should be understood to include any
method in which the data of the distinct layers can be
separately identified. The client issues requests for indi-
vidual layers of each block based on the occupancy of each
buffer, for example, the layers may be ordered in a priority
order such that a request for data from one layer may not be
issued if the occupancy of any buffer for a lower layer in the
priority order is below a threshold for that lower layer. In this
method, priority is given to receiving data from the lower
layers in the priority order such that if the available band-
width falls below that required to also receive higher layers
in the priority order then only the lower layers are requested.
Furthermore, the thresholds associated with the different
layers may be different, such that for example lower layers
have higher thresholds. In the case that the available band-
width changes such that the data for a higher layer cannot be
received before the playout time of the block then the data
for lower layers will necessarily already have been received
and so the presentation can continue with the lower layers
alone. Thresholds for buffer occupancy may be defined in
terms of bytes of data, playout duration of the data contained
in the buffer, number of blocks or any other suitable mea-
sure.

In a third embodiment, the methods of the first and second
embodiments may be combined such that there are provided
multiple media representations each comprising a subset of
the layers (as in the first embodiment) and such that the
second embodiment is applied to a subset of the layers
within a representation.

In a fourth embodiment the methods of the first, second
and/or third embodiments may be combined with the
embodiment in which multiple independent representations
of'the content are provided such that for example at least one
of'the independent representations comprises multiple layers
to which the techniques of the first, second and/or third
embodiments are applied.

Advanced Buffer Manager

In combination with buffer monitor 126 (see FIG. 2), an
advanced buffer manager can be used to optimize a client-
side buffer. Block-request streaming systems want to ensure
that media playout can start quickly and continue smoothly,

10

15

20

25

30

35

40

45

50

55

60

65

52

while simultaneously providing the maximum media quality
to the user or destination device. This may require that the
client requests blocks that have the highest media quality,
but that also can be started quickly and received in time
thereafter to be played out without forcing a pause in the
presentation.

In embodiments that use the advanced buffer manager, the
manager determines which blocks of media data to request
and when to make those requests. An advanced buffer
manager might, for example, be provided with a set of
metadata for the content to be presented, this metadata
including a list of representations available for the content
and metadata for each representation. Metadata for a repre-
sentation may comprise information about the data rate of
the representation and other parameters, such as video, audio
or other codecs and codec parameters, video resolution,
decoding complexity, audio language and any other param-
eters that might affect the choice of representation at the
client.

Metadata for a representation may also comprise identi-
fiers for the blocks into which the representation has been
segmented, these identifiers providing the information
needed for the client to request a block. For example, where
the request protocol is HTTP, the identifier might be an
HTTP URL possibly together with additional information
identifying a byte range or time span within the file identi-
fied by the URL, this byte range or time span identifying the
specific block within the file identified by the URL.

In a specific implementation, the advanced buffer man-
ager determines when a receiver makes a request for new
blocks and might itself handle sending the requests. In a
novel aspect, the advanced buffer manager makes requests
for new blocks according to the value of a balancing ratio
that balances between using too much bandwidth and run-
ning out of media during a streaming playout.

The information received by buffer monitor 126 from
block buffer 125 can include indications of each event when
media data is received, how much has been received, when
playout of media data has started or stopped, and the speed
of media playout. Based on this information, buffer monitor
126 might calculate a variable representing a current buffer
size, B, .. 10 these examples, B_, ., represents the
amount of media contained in a client or other device buffer
or buffers and might be measured in units of time so that
B, ren: represents the amount of time that it would take to
playout all of the media represented by the blocks or partial
blocks stored in the buffer or buffers if no additional blocks
or partial blocks were received. Thus, B_,,.,.,., represents the
“playout duration”, at normal playout speed, of the media
data available at the client, but not yet played.

As time passes, the value of B_,,,.,, Will decrease as
media is played out and may increase each time new data for
a block is received. Note that, for the purposes of this
explanation, it is assumed that a block is received when the
entire data of that block is available at block requestor 124,
but other measures might be used instead for example to take
into account the reception of partial blocks. In practice,
reception of a block may take place over a period of time.

FIG. 13 illustrates a variation of the value of B,_,,,...,,, over
time, as media is played out and blocks are received. As
shown in FIG. 13, the value of B_,,,,..,,, is zero for times less
than t,, indicating that no data has been received. At t,, the
first block is received and the value of B_,,,.,,, increases to
equal the playout duration of the received block. At this
time, playout has not yet begun and so the value of B_,,,,....,
remains constant, until time t;, at which a second block
arrives and B_,,,.,., increases by the size of this second

US 9,432,433 B2

53

block. At this time, playout begins and the value of B_,,,...,
begins to decrease linearly, until time t,, at which time a
third block arrives.

The progression of B_,,,..,,, continues in this “sawtooth”
manner, increasing stepwise each time a block is received (at
times t,, t5, t,, ts and tg) and decreasing smoothly as data is
played out in between. Note that in this example, playout
proceeds at the normal playout rate for the content and so the
slope of the curve between block reception is exactly -1,
meaning that one second of media data is played for each
one second of real time that passes. With frame-based media
played out at a given number of frames per second, e.g.,
24-frames per second, the slope of —1 will be approximated
by small step functions that indicate the playout of each
individual frame of data, e.g., steps of —'4 of a second when
each frame is played out.

FIG. 14 shows another example of the evolution of
Bceurrent over time. In that example, the first block arrives at
t, and playout begins immediately. Block arrival and playout
continues until time t;, at which the value of B_,,,...,., reaches
zero. When that happens, no further media data is available
for playout, forcing a pause in the media presentation. At
time t,, a fourth block is received and playout can resume.
This example therefore shows a case where the reception of
the fourth block was later than desired, resulting in a pause
in playout and thus a poor user experience. Thus, a goal of
the advanced buffer manager and other features is to reduce
the probability of this event, while simultaneously main-
taining high media quality.

Buffer monitor 126 may also calculate another metric,
B, .;:o(t), which is the ratio of the media received in a given
time period to the length of the time period. More specifi-
cally, B,,,,, (1) is 0qual 10 T,y /(T, =0 Where T,, ., i
the amount of media (measured by its playout time) received
in the time period from t, some time earlier than the current
time up to the current time, T,,,,.

B, .:.(t) can be used to measure the rate of change of
B renr Braio(1)=0 is the case where no data has been
received since time t; B_,,,.,, Will have been reduced by
(T,,,,—t) since that time, assuming media is playing out.
B,..,(t)=1 is the case where media is received in the same
amount as it is being played out, for time (T,,,,,~t); B_,on
will have the same value at time T, as at time t. B, ()>1
is the case where more data has been received than is
necessary to play out for time (T,,,,,-1); B . will have
increased from time t to time T,,,,.

Buffer Monitor 126 further calculates a value State, which
may take a discrete number of values. Buffer Monitor 126 is
further equipped with a function, NewState(B_,,,,....» B uso)s
which, given the current value of B_,,,,...., and values of B, .,
for t<T,,,,,, provides a new State value as output. Whenever
B_,sen: and B, . cause this function to return a value
different from the current value of State, the new value is
assigned to State and this new State value indicated to block
selector 123.

The function NewState may be evaluated with reference
to the space of all possible values of the pair (B, .0
B, .si0(T,0n="T5)) where T, may be a fixed (configured) value,
or may be derived from B,_,,,,.,.,, for example by a configu-
ration table which maps from values of B,_,,,...,,, to values of
T,, or may depend on the previous value of State. Buffer
monitor 126 is supplied with a one or more partitionings of
this space, where each partitioning comprises sets of disjoint
regions, each region being annotated with a State value.
Evaluation of the function NewState then comprises the
operation of identifying a partitioning and determining the
region into which the pair (B_,,,cnrs Brasio(Liow— 1)) falls.

now curren.

20

25

40

45

55

54

The return value is then the annotation associated with that
region. In a simple case, only one partitioning is provided.
In a more complex case, the partitioning may depend on the
pair (B_,..rens Braso(Liow— 1)) at the previous time of evalu-
ation of the NewState function or on other factors.

In a specific embodiment, the partitioning described
above may be based on a configuration table containing a
number of threshold values for B_,,,.,, and a number of
threshold values for B,,,,. Specifically, let the threshold
values for Bcurrent be Bthresh(o):05 Bthresh(l)i e Bthresh(nl)s
B jesn(;+1)=00, where n, is the number of non-zero thresh-
old values for B_,,,,.,,,- Let the threshold values for B, ,;, be
Br—thresh (0):05 Br-thresh(1)5 . . . ’ Br—thresh (n2) ’
B, jesn(s+1)=00, where n, is the number of threshold
values for B, ;.. These threshold values define a partitioning
comprising an (n,+1) by (n,+1) grid of cells, where the i-th
cell of the j-th row corresponds to the region in which
Bthresh (1_ 1)<:Bcurrent<Bthresh (l) and Br—thresh(i -1)
<=B, ,;:0<B,_mresnd)- Each cell of the grid described above is
annotated with a state value, such as by being associated
with particular values stored in memory, and the function
NewsState then returns the state value associated with the cell
indicated by the values B,,,,,..., and B, .;.(T,..,.—T,)-

In a further embodiment, a hysteresis value may be
associated to each threshold value. In this enhanced method,
evaluation of the function NewState may be based on a
temporary partitioning constructed using a set of temporarily
modified threshold values, as follows. For each B_,,,...
threshold value that is less than the B, ., range corre-
sponding to the chosen cell on the last evaluation of New-
State, the threshold value is reduced by subtracting the
hysteresis value associated with that threshold. For each
B, en: threshold value that is greater than the B,,,,.,,, range
corresponding to the chosen cell on the last evaluation of
NewState, the threshold value is increased by adding the
hysteresis value associated with that threshold. For each
B,,., threshold value that is less than the B,,,, range
corresponding to the chosen cell on the last evaluation of
NewState, the threshold value is reduced by subtracting the
hysteresis value associated with that threshold. For each
B, .. threshold value that is greater than the B, , range
corresponding to the chose cell on the last evaluation of
NewState, the threshold value is increased by adding the
hysteresis value associated with that threshold. The modified
threshold values are used to evaluate the value of NewState
and then the threshold values are returned to their original
values.

Other ways of defining partitionings of the space will be
obvious to those of skill in the art upon reading this
disclosure. For example, a partitioning may be defined by
the use of inequalities based on linear combinations of B
and B_,,,.,.,, for example linear inequality thresholds of the
form al1-B, ,, +02-B,_,,,.,.=<c0 for real-valued a0, al, and
a2, to define half-spaces within the overall space and
defining each disjoint set as the intersection of a number of
such half-spaces.

The above description is illustrative of the basic process.
As will be clear to those skilled in the art of real-time
programming upon reading this disclosure, efficient imple-
mentations are possible. For example, at each time that new
information is provided to buftfer monitor 126, it is possible
to calculate the future time at which NewState will transition
to a new value if for example no further data for blocks is
received. A timer is then set for this time and in the absence
of further inputs expiry of this timer will cause the new State
value to be sent to block selector 123. As a result, compu-

ratio

US 9,432,433 B2

55

tations need only be performed when new information is
provided to buffer monitor 126 or when a timer expires,
rather than continuously.

Suitable values of State could be “Low”, “Stable” and
“Full”. An example of a suitable set of threshold values and
the resulting cell grid is shown in FIG. 15.

In FIG.15,B,_,,.,.,, thresholds are shown on the horizontal
axis in milliseconds, with hysteresis values shown below as
“+/-value”. B, ;. thresholds are shown on the vertical axis
in permille (i.e., multiplied by 1000) with hysteresis values
shown below as “+/-value”. State values are annotated into
the grid cells as “L”, “S” and “F” for “Low”, “Stable” and
“Full” respectively.

Block selector 123 receives notifications from block
requestor 124 whenever there is an opportunity to request a
new block. As described above, block selector 123 is pro-
vided with information as to the plurality of blocks available
and metadata for those blocks, including for example infor-
mation about the media data rate of each block.

Information about the media data rate of a block may
comprise the actual media data rate of the specific block
(i.e., the block size in bytes divided by the playout time in
seconds), the average media data rate of the representation
to which the block belongs or a measure of the available
bandwidth required, on a sustained basis, to play out the
representation to which the block belongs without pauses, or
a combination of the above.

Block selector 123 selects blocks based on the State value
last indicated by buffer monitor 126. When this State value
is “Stable”, block selector 123 selects a block from the same
representation as the previous selected block. The block
selected is the first block (in playout order) containing media
data for a time period in the presentation for which no media
data has previously been requested.

When the State value is “Low”, block selector 123 selects
a block from a representation with a lower media data rate
than that of the previously selected block. A number of
factors can influence the exact choice of representation in
this case. For example, block selector 123 might be provided
with an indication of the aggregate rate of incoming data and
may choose a representation with a media data rate that is
less than that value.

When the State value is “Full”, block selector 123 selects
a block from a representation with a higher media data rate
than that of the previously selected block. A number of
factors can influence the exact choice of representation in
this case. For example, block selector 123 may be provided
with an indication of the aggregate rate of incoming data and
may choose a representation with a media data rate that is
not more than that value.

A number of additional factors may further influence the
operation of block selector 123. In particular, the frequency
with which the media data rate of the selected block is
increased may be limited, even if buffer monitor 126 con-
tinues to indicate the “Full” state. Furthermore, it is possible
that block selector 123 receives a “Full” state indication but
there are no blocks of higher media data rate available (for
example because the last selected block was already for the
highest available media data rate). In this case, block selec-
tor 123 may delay the selection of the next block by a time
chosen such that the overall amount of media data buffered
in block buffer 125 is bounded above.

Additional factors may influence the set of blocks that are
considered during the selection process. For example, the
available blocks may be limited to those from representa-
tions whose encoding resolution falls within a specific range
provided to block selector 123.

10

15

20

25

30

35

40

45

50

55

60

65

56

Block selector 123 may also receive inputs from other
components that monitor other aspects of the system, such
as availability of computational resources for media decod-
ing. If such resources become scarce, block selector 123
may choose blocks whose decoding is indicated to be of
lower computational complexity within the metadata (for
example, representations with lower resolution or frame rate
are generally of lower decoding complexity).

The above-described embodiment brings a substantial
advantage in that the use of the value B, ,,,,, in the evaluation
of the NewState function within buffer monitor 126 allows
for a faster increase in quality at the start of the presentation
compared to a method that considers only B,,,,,...,., Without
considering B, ., a large amount of buffered data may be
accumulated before the system is able to select blocks with
a higher media data rate and hence a higher quality. How-
ever, when the B, .., value is large, this indicates that the
available bandwidth is much higher than the media data rate
of the previously received blocks and that even with rela-
tively little buffered data (i.e., low value for B_,,,...), it
remains safe to request blocks of higher media data rate and
hence higher quality. Equally, if the B, ;. value is low (<1,
for example) this indicates that the available bandwidth has
dropped below the media data rate of the previously
requested blocks and thus, evenif B,,,,...,,, 1s high, the system
will switch to a lower media data rate and hence a lower
quality, for example to avoid reaching the point where
B_,ren =0 and the playout of the media stalls. This improved
behavior may be especially important in environments
where network conditions and thus delivery speeds may
vary quickly and dynamically, e.g., users streaming to
mobile devices.

Another advantage is conferred by the use of configura-
tion data to specify the partitioning of the space of values of
B_.rene Braso)- Such configuration data can be provided to
buffer monitor 126 as part of the presentation metadata or by
other dynamic means. Since, in practical deployments, the
behavior of user network connections can be highly variable
between users and over time for a single user, it may be
difficult to predict partitionings that will work well for all
users. The possibility to provide such configuration infor-
mation to users dynamically allows for good configuration
settings to be developed over time according to accumulated
experience.

Variable Request Sizing

A high frequency of requests may be required if each
request is for a single block and if each block encodes for a
short media segment. If the media blocks are short, the video
playout is moving from block to block quickly, which
provides more frequent opportunities for the receiver to
adjust or change its selected data rate by changing the
representation, improving the probability that playout can
continue without stalling. However, a downside to a high
frequency of requests is that they might not be sustainable on
certain networks in which available bandwidth is con-
strained in the client to server network, for example, in
wireless WAN networks such as 3G and 4G wireless WANSs,
where the capacity of the data link from client to network is
limited or can become limited for short or long periods of
time due to changes in radio conditions.

A high frequency of requests also implies a high load on
the serving infrastructure, which brings associated costs in
terms of capacity requirements. Thus, it would be desirable
to have some of the benefits of a high frequency of requests
without all of the disadvantages.

In some embodiments of a block streaming system, the
flexibility of high request frequency is combined with less

US 9,432,433 B2

57

frequent requests. In this embodiment, blocks may be con-
structed as described above and aggregated into segments
containing multiple blocks, also as described above. At the
beginning of the presentation, the processes described above
in which each request references a single block or multiple
concurrent requests are made to request parts of a block are
applied to ensure a fast channel zapping time and therefore
a good user experience at the start of the presentation.
Subsequently, when a certain condition, to be described
below, is met, the client may issue requests which encom-
pass multiple blocks in a single request. This is possible
because the blocks have been aggregated into larger files or
segments and can be requested using byte or time ranges.
Consecutive byte or time ranges can be aggregated into a
single larger byte or time range resulting in a single request
for multiple blocks, and even discontinuous blocks can be
requested in one request.

One basic configuration that can be driven by deciding
whether to request a single block (or a partial block) or to
request multiple consecutive blocks is have the configura-
tion base the decision on whether or not the requested blocks
are likely to be played out or not. For example, if it is likely
that there will be a need to change to another representation
soon, then it is better for the client to make requests for
single blocks, i.e., small amounts of media data. One reason
for this is that if a request for multiple blocks is made when
a switch to another representation might be imminent is that
the switch might be made before the last few blocks of the
request are played out. Thus, the download of these last few
blocks might delay the delivery of media data of the repre-
sentation to which the switch is made, which could cause
media playout stalls.

However, requests for single blocks do result in a higher
frequency of requests. On the other hand, if it is unlikely that
there will be a need to change to another representation
soon, then it can be preferred to make requests for multiple
blocks, as all of these blocks are likely to be played out, and
this results in a lower frequency of requests, which can
substantially lower the request overhead, especially if it is
typical that there is no imminent change in representation.

In conventional block aggregation systems, the amount
requested in each request is not dynamically adjusted, i.e.,
typically each request is for an entire file, or each request is
for approximately the same amount of the file of a repre-
sentation (sometimes measured in time, sometimes in bytes).
Thus, if all requests are smaller, then the request overhead is
high, whereas if all requests are larger, then this increases the
chances of media stall events, and/or providing a lower
quality of media playout if lower quality representations are
chosen to avoid having to quickly change representations as
network conditions vary.

An example of a condition which, when met, may cause
subsequent requests to reference multiple blocks, is a thresh-
old on the buffer size, B, c.; If Byen; 15 below the
threshold, then each request issued references a single block.
If B, 0 15 greater than or equal to the threshold then each
request issued references multiple blocks. If a request is
issued which references multiple blocks, then the number of
blocks requested in each single request may be determined
in one of several possible ways. For example, the number
may be constant, for example, two. Alternatively, the num-
ber of blocks requested in a single request may be dependent
on the buffer state and in particular on B_,,,.,,.,,,- For example,
a number of thresholds may be set, with the number of
blocks requested in a single request being derived from the
highest of the multiple thresholds that is less than B

current®

40

45

55

58

Another example of a condition which, when met, may
cause requests to reference multiple blocks, is the value
State variable described above. For example, when State is
“Stable” or “Full” then requests may be issued for multiple
blocks, but when State is “Low” then all requests may be for
one block.

Another embodiment is shown in FIG. 16. In this embodi-
ment, when the next request is to be issued (determined in
step 1300), the current State value and Beurrent is used to
determine the size of the next request. If the current State
value is “Low” or the current State value is “Full” and the
current representation is not the highest available (deter-
mined in step 1310, answer is “Yes”), then the next request
is chosen to be short, for example just for the next block
(block determined and request made in step 1320). The
rationale behind this is that these are conditions where it is
likely that quite soon there will be a change of representa-
tions. If the current State value is “Stable” or the current
State value is “Full” and the current representation is the
highest available (determined in step 1310, answer is “No”),
then the duration of the consecutive blocks requested in the
next request is chosen to be proportional to an a-fraction of
B._,.sren; for some fixed a<1 (blocks determined in step 1330,
request made in step 1340), e.g., for =04, if B_,,,.,.~=5
seconds, then the next request might be for approximately 2
seconds of blocks, whereas if B_,,,.,,,=10 seconds, then the
next request might be for approximately 4 seconds of blocks.
One rationale for this is that in these conditions it might be
unlikely that a switch to a new representation will be made
for an amount of time that is proportional to B
Flexible Pipelining

Block-streaming systems might use a file request protocol
that has a particular underlying transport protocol, for
example TCP/IP. At the beginning of a TCP/IP or other
transport protocol connection, it may take some consider-
able time to achieve utilization of the full available band-
width. This may result in a “connection startup penalty”
every time a new connection is started. For example, in the
case of TCP/IP, the connection startup penalty occurs due to
both the time taken for the initial TCP handshake to establish
the connection and the time taken for the congestion control
protocol to achieve full utilization of the available band-
width.

In this case, it may be desirable to issue multiple requests
using a single connection, in order to reduce the frequency
with which the connection startup penalty is incurred. How-
ever, some file transport protocols, for example HTTP, do
not provide a mechanism to cancel a request, other than
closing the transport layer connection altogether and thereby
incurring a connection startup penalty when a new connec-
tion is established in place of the old one. An issued request
may need to be cancelled if it is determined that available
bandwidth has changed and a different media data rate is
required instead, i.e., there is a decision to switch to a
different representation. Another reason for cancelling an
issued request may be if the user has requested that the
media presentation be ended and a new presentation begun
(perhaps of the same content item at a different point in the
presentation or perhaps of a new content item).

As is known, the connection startup penalty can be
avoided by keeping the connection open and re using the
same connection for subsequent requests and as is also
known the connection can be kept fully utilized if multiple
requests are issued at the same time on the same connection
(a technique known as “pipelining” in the context of HT'TP).
However, a disadvantage of issuing multiple requests at the
same time, or more generally in such a way that multiple

curvent'

US 9,432,433 B2

59

requests are issued before previous requests have completed
over a connection, may be that the connection is then
committed to carrying the response to those requests and so
if changes to which requests should be issued becomes
desirable then the connection may be closed if it becomes
necessary to cancel requests already issued that are no
longer desired.

The probability that an issued request needs to be can-
celled may be in part dependent on the duration of the time
interval between the issuing of the request and the playout
time of the requested block in the sense that when this time
interval is high the probability that an issued request needs
to be cancelled is also high (because it is likely that the
available bandwidth changes during the interval).

As is known, some file download protocols have the
property that a single underlying transport layer connection
can advantageously be used for multiple download requests.
For example, HTTP has this property, since reuse of a single
connection for multiple requests avoids the “connection
startup penalty” described above for requests other than the
first. However, a disadvantage of this approach is that the
connection is committed to transporting the requested data
in each issued request and therefore if a request or requests
need to be cancelled then either the connection may be
closed, incurring the connection startup penalty when a
replacement connection is established, or the client may wait
to receive data that is no longer needed, incurring a delay in
the reception of subsequent data.

We now describe an embodiment which retains the advan-
tages of connection reuse without incurring this disadvan-
tage and which also additionally improves the frequency
with which connections can be reused.

The embodiments of the block-streaming systems
described herein are configured to reuse a connection for
multiple requests without having to commit the connection
at the start to a particular set of requests. Essentially, a new
request is issued on an existing connection when already
issued requests on the connection have not yet completed,
but are close to completion. One reason for not waiting until
the existing requests complete is that if the previous requests
complete, then the connection speed could degrade, i.c., the
underlying TCP session could go into an idle state, or the
TCP cwnd variable could be substantially reduced, thereby
substantially reducing the initial download speed of the new
request issued on that connection. One reason for waiting
until close to completion before issuing an additional request
is because if a new request is issued long before previous
requests complete, then the new issued request may not even
commence for some substantial period of time, and it could
be the case that during this period of time before the new
issued request commences the decision to make the new
request is no longer valid, e.g., due to a decision to switch
representations. Thus, embodiment of clients that implement
this technique will issue a new request on a connection as
late as possible without slowing down the download capa-
bilities of the connection.

The method comprises monitoring the number of bytes
received on a connection in response to the latest request
issued on this connection and applying a test to this number.
This can be done by having the receiver (or the transmitter,
if applicable) configured to monitor and test.

If the test passes, then a further request may be issued on
the connection. One example of a suitable test is whether the
number of bytes received is greater than a fixed fraction of
the size of the data requested. For example, this fraction
could be 80%. Another example of a suitable test is based on
the following calculation, as illustrated in FIG. 17. In the

10

15

20

25

30

35

40

45

50

55

60

65

60

calculation, let R be an estimate of the data rate of the
connection, T be an estimate of the Round Trip Time
(“RTT”) and X be numeric factor that, for example, could be
a constant set to a value between 0.5 and 2, where estimates
of R and T are updated on a regular basis (updated in step
1410). Let S be the size of the data requested in the last
request, B be the number of bytes of the requested data
received (calculated in step 1420).

A suitable test would be to have the receiver (or the
transmitter, if applicable) execute a routine to evaluate the
inequality (S-B)<X-R-T (tested in step 1430), and if “Yes”
then take an action. For example, a test could be made to see
if there is another request ready to be issued on the connec-
tion (tested in step 1440), and if “Yes” then issue that request
to the connection (step 1450) and if “No” then the process
returns to step 1410 to continue updating and testing. If the
result of the test in step 1430 is “No” then the process returns
to step 1410 to continue updating and testing.

The inequality test in step 1430 (performed by appropri-
ately programmed elements, for example) causes each sub-
sequent request to be issued when the amount of remaining
data to be received is equal to X times the amount of data
that can be received at the current estimated reception rate
within one RTT. A number of methods to estimate the data
rate, R, in step 1410 are known in the art. For example, the
data rate may be estimated as Dt/t, where Dt is the number
of bits received in the preceding t seconds and where t may
be, for example, 1 s or 0.5 s or some other interval. Another
method is an exponential weighted average, or first order
Infinite Impulse Response (IIR) filter of the incoming data
rate. A number of methods to estimate the RTT, T, in step
1410 are known in the art.

The test in step 1430 can be applied to the aggregate of all
active connections on an interface, as explained in more
detail below.

The method further comprises constructing a list of can-
didate requests, associating each candidate request with a set
of suitable servers to which the request can be made and
ordering the list of candidate requests in order of priority.
Some entries in the list of candidate requests may have the
same priority. Servers in the list of suitable servers associ-
ated with each candidate request are identified by host-
names. Each hostname corresponds to a set of Internet
Protocol addresses which can be obtained from the Domain
Name System as is well known. Therefore each possible
request on the list of candidate requests is associated with a
set of Internet Protocol addresses, specifically the union of
the sets of Internet Protocol Addresses associated with the
hostnames associated with the servers associated with the
candidate request. Whenever the test described in step 1430
is met for a connection, and no new request has yet been
issued on that connection, the highest priority request on the
lists of candidate requests with which the Internet Protocol
address of the destination of the connection is associated is
chosen, and this request is issued on the connection. The
request is also removed from the list of candidate requests.

Candidate requests may be removed (cancelled) from the
list of candidate requests, new requests may be added to the
candidate list with a priority that is higher than already
existing requests on the candidate list, and existing requests
on the candidate list may have their priority changed. The
dynamic nature of which requests are on the list of candidate
requests, and the dynamic nature of their priority on the
candidate list, can alter which requests might be issued next
depending on when a test of the type described in step 1430
is satisfied.

US 9,432,433 B2

61

For example, it could be possible that if the answer to the
test described in step 1430 is “Yes” at some time t then the
next request issued would be a request A, whereas if the
answer to the test described in step 1430 is not “Yes” until
some time t">t then the next request issued would instead be
a request B, because either request A was removed from the
list of candidate requests between time t and t', or because
request B was added to the list of candidate requests with
higher priority than request A between time t and t', or
because request B was on the candidate list at time t but with
lower priority than request A, and between time t and t' the
priority of request B was made higher than that of request A.

FIG. 18 illustrates an example of a list of requests on the
candidate list of requests. In this example, there are three
connections, and there are six requests on the candidate list,
labeled A, B, C, D, E and F. Each of the requests on the
candidate list can be issued on a subset of the connections as
indicated, e.g., request A can be issued on connection 1,
whereas request F can be issued on connection 2 or con-
nection 3. The priority of each request is also labeled in FIG.
18, and a lower priority value indicates that a request is
higher priority. Thus, requests A and B with priority 0 are the
highest priority requests, whereas request F with a priority
value of 3 is the lowest priority among the requests on the
candidate list.

If, at this point in time t, connection 1 passes the test
described in step 1430, then either request A or request B is
issued on connection 1. If instead connection 3 passes the
test described in step 1430 at this time t, then request D is
issued on connection 3, since request D is the request with
the highest priority that can be issued on connection 3.

Suppose that for all connections the answer to the test
described in step 1430 from time t to some later time t' is
“No”, and between time t and t' request A changes its priority
from 0 to 5, request B is removed from the candidate list, and
a new request G with priority 0 is added to the candidate list.
Then, at time t', the new candidate list might be as shown in
FIG. 19.

If at time t' connection 1 passes the test described in step
1430, then request C with priority 4 is issued on connection
1, since it is the highest priority request on the candidate list
that can be issued on connection 1 at this point in time.

Suppose in this same situation that instead request A
would have been issued on connection 1 at time t (which was
one of the two highest priority choices for connection 1 at
time t as shown in FIG. 18). Since the answer to the test
described in step 1430 from time t to some later time t' is
“No” for all connections, connection 1 is still delivering data
up till at least time t' for requests issued prior to time t, and
thus request A would not have commenced until at least time
t'. Issuing request C at time t' is a better decision than issuing
request A at time t would have been, since request C
commences at the same time after t' as request A would have
commenced, and since by that time request C is higher
priority than request A.

As another alternative, if the test of the type described in
step 1430 is applied to the aggregate of the active connec-
tions a connection may be chosen that has a destination
whose Internet Protocol Address is associated with the first
request on the list of candidate requests or another request
with the same priority as said first request.

A number of methods are possible for the construction of
the list of candidate requests. For example, the candidate list
could contain n requests representing requests for a next n
portions of data of the current representation of the presen-
tation in time sequence order, where the request for the
earliest portion of data has highest priority and the request

10

15

20

25

30

35

40

45

50

55

60

65

62

for the latest portion of data has lowest priority. In some
cases n may be one. The value of n may depend on the buffer
size B,,,,,e.p OF the State variable or another measure of the
state of the client buffer occupancy. For example, a number
of threshold values may be set for B_,,,.,, and a value
associated with each threshold and then the value of n is
taken to be the value associated with the highest threshold
that is less than B_,,,,,,.,-

The embodiment described above ensures flexible allo-
cation of requests to connections, ensuring that preference is
given to reusing an existing connection even if the highest
priority request is not suitable for that connection (because
the destination IP address of the connection is not one that
is allocated to any of the hostnames associated with the
request). The dependency of n on B_,,,..,,, or State or another
measure of the client buffer occupancy ensures that such
“out of priority order” requests are not issued when the client
is in urgent need of issuance and completion of the request
associated with the next portion of data to be played out in
the time sequence.

These methods can be advantageously combined with
cooperative HTTP and FEC.

Consistent Server Selection

As is well known, files to be downloaded using a file
download protocol are commonly identified by an identifier
comprising a hostname and a filename. For example this is
the case for the HTTP protocol in which case the identifier
is a Uniform Resource Identifier (URI). A hostname may
correspond to multiple hosts, identified by Internet Protocol
addresses. For example this is a common method of spread-
ing the load of requests from multiple clients across multiple
physical machines. In particular this approach is commonly
taken by Content Delivery Networks (CDNs). In this case a
request issued on a connection to any of the physical hosts
is expected to succeed. A number of methods are known by
which a client may select from amongst the Internet Protocol
Addresses associated with a hostname. For example, these
addresses are typically provided to the client via the Domain
Name System and are provided in priority order. A client
may then choose the highest priority (first) Internet Protocol
Address. However, generally there is no coordination
between clients as to how this choice is made, with the result
that different clients may request the same file from different
servers. This may result in the same file being stored in the
cache of nearby multiple servers, which lowers the effi-
ciency of the cache infrastructure.

This can be handled by a system that advantageously
increases the probability that two clients requesting the same
block will request this block from the same server. The novel
method described here comprises selecting from amongst
the available Internet Protocol Addresses in a manner deter-
mined by the identifier of the file to be requested and in such
a way that different clients presented with the same or
similar choices of Internet Protocol addresses and file iden-
tifiers will make the same choice.

A first embodiment of the method is described with
reference to FIG. 20. The client first obtains a set of Internet
Protocol addresses IP,, IP,, . . ., IP,, as shown in step 1710.
If there is a file that requests are to be issued for, as decided
in step 1720, then the client determines which Internet
Protocol address to issue requests for the file, as determined
in steps 1730-1770. Given a set of Internet Protocol
addresses and an identifier for a file to be requested the
method comprises ordering the Internet Protocol addresses
in a manner determined by the file identifier. For example,
for each Internet Protocol address a byte string is con-
structed comprising the concatenation of the Internet Pro-
tocol address and the file identifier, as shown in step 1730.

US 9,432,433 B2

63

A hash function is applied to this byte string, as shown in
step 1740, and the resulting hash values are arranged accord-
ing to a fixed ordering, as shown in step 1750, for example
increasing numerical order, inducing an ordering on the
Internet Protocol addresses. The same hash function can be
used by all clients, thereby guaranteeing that the same result
is produced by the hash function on a given input by all
clients. The hash function might be statically configured into
all clients in a set of clients, or all clients in a set of client
might obtain a partial or full description of the hash function
when the clients obtain the list of Internet Protocol
addresses, or all clients in a set of client might obtain a
partial or full description of the hash function when the
clients obtain the file identifier, or the hash function may be
determined by other means. The Internet Protocol address
that is first in this ordering is chosen and this address is then
used to establish a connection and issue requests for all or
portions of the file, as shown in steps 1760 and 1770.

The method above may be applied when a new connec-
tion is established to request a file. It may also be applied
when a number of established connections are available and
one of these may be chosen to issue a new request.

Furthermore, when an established connection is available
and a request may be chosen from amongst a set of candidate
requests with equal priority an ordering on the candidate
requests is induced, for example, by the same method of
hash values described above and the candidate request
appearing first in this ordering is chosen. The methods may
be combined to select both a connection and candidate
request from amongst a set of connections and requests of
equal priority, again by computing a hash for each combi-
nation of connection and request, ordering these hash values
according to a fixed ordering and choosing the combination
which occurs first in the ordering induced on the set of
combinations of requests and connections.

This method has advantage for the following reason: a
typical approach taken by a block serving infrastructure such
as that shown in FIG. 1 (BS1101) or FIG. 2 (BSIs 101), and
in particular an approach commonly taken by CDNs, is to
provide multiple caching proxy servers which receive client
requests. A caching proxy server may not be provided with
the file requested in a given request and in this case such
servers typically forward the request to another server,
receive the response from that server, typically including the
requested file, and forward the response to the client. The
caching proxy server may also store (cache) the requested
file so that it can response immediately to subsequent
requests for the file. The common approach described above
has the property that the set of files stored on a given caching
proxy server is largely determined by the set of requests that
the caching proxy server has received.

The method described above has the following advantage.
If all clients in a set of clients are provided the same list of
Internet Protocol addresses then these clients will use the
same Internet Protocol address for all requests issued for the
same file. If there are two different lists of Internet Protocol
addresses and each client is provided with one of these two
lists then the clients will use at most two different Internet
Protocol addresses for all requests issued for the same file.
In general, if the lists of Internet Protocol addresses provided
to clients are similar then the clients will use a small set of
the provided Internet Protocol addresses for all requests
issued for the same file. Since proximate clients tend to be
provided similar lists of Internet Protocol addresses, it is
likely that proximate clients issue requests for a file from
only a small portion of the caching proxy servers available

10

15

20

25

30

35

40

45

50

55

60

65

64

to those clients. Thus, there will be only a small fraction of
caching proxy servers that cache the file, which advanta-
geously minimizes the amount of caching resources used to
cache the file.

Preferably the hash function has the property that a very
small fraction of different inputs are mapped to the same
output, and that different inputs are mapped to essentially
random outputs, to ensure that for a given set of Internet
Protocol addresses, the proportion of files for which a given
one of the Internet Protocol addresses is first in the sorted list
produced by step 1750 is approximately the same for all
Internet Protocol addresses in the list. On the other hand, it
is important that the hash function is deterministic, in the
sense that for a given input the output of the hash function
is the same for all clients.

Another advantage of the method described above is the
following. Suppose that all clients in a set of clients are
provided the same list of Internet Protocol addresses.
Because of the properties of the hash function just described,
it is likely that the requests for different files from these
clients will be evenly spread across the set of Internet
Protocol addresses, which in turn means that the requests
will be spread evenly across the caching proxy servers.
Thus, the caching resources used for storing these files is
spread evenly across the caching proxy servers, and the
requests for files is spread evenly across the caching proxy
servers. Thus, the method provides both storage balancing
and load balancing across the caching infrastructure.

A number of variations to the approach described above
are known to those of skill in the art and in many cases these
variations retain the property that the set of files stored on a
given proxy is determined at least in part by the set of
requests the caching proxy server has received. In the
common case in which a given hostname resolves to mul-
tiple physical caching proxy servers, it will be common that
all these servers will eventually store a copy of any given file
that is frequently requested. Such duplication may be unde-
sirable, since storage resources on the caching proxy servers
are limited and as a result files may be, on occasion,
removed (purged) from the cache. The novel method
described here ensures that requests for a given file are
directed to caching proxy servers in such a way that this
duplication is reduced, thereby reducing the need to remove
files from the cache and thereby increasing the likelihood
that any given file is present in (i.e., has not been purged
from) in the proxy cache.

When a file is present in the proxy cache, the response
sent to the client is faster, which has advantage in reducing
the probability that the requested file arrives late, which may
result in a pause in media playout and therefore a bad user
experience. Additionally, when a file is not present in the
proxy cache the request may be sent to another server,
causing additional load on both the serving infrastructure
and the network connections between servers. In many cases
the server to which the request is sent may be at a distant
location and the transmission of the file from this server back
to the caching proxy server may incur transmission costs.
Therefore the novel method described here results in a
reduction in these transmission costs.

Probabilistic Whole File Requests

A particular concern in the case that the HTTP protocol is
used with Range requests is the behavior of cache servers
that are commonly used to provide scalability in the serving
infrastructure. While it may be common for HTTP cache
servers to support the HTTP Range header, the exact behav-
ior of different HTTP cache servers varies by implementa-
tion. Most cache server implementations serve Range

US 9,432,433 B2

65

requests from cache in the case that the file is available in the
cache. A common implementation of HTTP Cache servers
always forwards downstream HTTP requests containing
Range header to an upstream node unless the cache server
has a copy of the file (cache server or origin server). In some
implementations the upstream response to the Range request
is the entire file, and this entire file is cached and the
response to the downstream Range request is extracted from
this file and sent. However, in at least one implementation
the upstream response to the Range request is just the data
bytes in the Range request itself, and these data bytes are not
cached but instead just sent as the response to the down-
stream Range request. As a result, use of Range headers by
clients may have the consequence that the file itself is never
brought into caches and the desirable scalability properties
of the network will be lost.

In the foregoing, the operation of caching proxy servers
was described and also the method of requesting Blocks
from a file which is an aggregations of multiple blocks was
described. For example this can be achieved by the use of the
HTTP Range request header. Such requests are called “par-
tial requests” in the following. A further embodiment is now
described which has advantage in the case that the block
serving infrastructure 101 does not provide complete sup-
port for the HTTP Range header. Commonly, servers within
a block serving infrastructure, for example a Content Deliv-
ery Network, support partial requests but may not store the
response to partial requests in local storage (cache). Such a
server may fulfill a partial request by forwarding the request
to another server, unless the entire file is stored in local
storage, in which case the response may be sent without
forwarding the request to another server.

A block-request streaming system which makes use of the
novel enhancement of block aggregation described above
may perform poorly if the block serving infrastructure
exhibits this behavior, since all requests, being partial
requests, will be forwarded to another server and no requests
will be served by caching proxy servers, defeating the object
of providing the caching proxy servers in the first place.
During the block-request streaming process as described
above, a client may at some point request a Block which is
at the beginning of a file.

According to the novel method here described, whenever
a certain condition is met, such requests may be converted
from requests for the first Block in a file to requests for the
entire file. When a request for the whole file is received by
a caching proxy server the proxy server typically stores the
response. Therefore the use of these requests causes the file
to be brought into the cache of the local caching proxy
servers such that subsequent requests, whether for the full
file or partial requests may be served directly by the caching
proxy server. The condition may be such that amongst a set
of requests associated with a given file, for example the set
of requests generated by a set of clients viewing the content
item in question, the condition will be met for at least a
provided fraction of these requests.

An example of a suitable condition is that a randomly
chosen number is above a provided threshold. This threshold
may be set such that the conversion of a single Block request
into a whole file request occurs on average for a provided
fraction of the requests, for example one time out of ten (in
which case the random number may be chosen from the
interval [0,1] and the threshold may be 0.9). Another
example of a suitable condition is that a hash function
calculated over some information associated with the block
and some information associated with the client takes one of
a provided set of values. This method has the advantage that

25

40

45

55

66

for a file which is frequently requested, the file will be
brought into the cache of a local proxy server however the
operation of the block-request streaming system is not
altered significantly from the standard operation in which
each request is for a single Block. In many cases, where the
conversion of the request from a single Block request to a
whole file request occurs, the client procedures would oth-
erwise go on to request the other Blocks within the file. If
this is the case, then such requests may be suppressed
because the Blocks in question will be received in any case
as a result of the whole file request.

URL Construction and Segment List Generation and Seek-
ing

The segment list generation deals with the issue of how a
client may generate a segment list from the MPD at a
specific client-local time NOW for a specific representation
which starts at some start time starttime either relative to the
start of the media presentation for on-demand cases or
expressed in wall-clock time. A segment list may comprise
a locator, for example a URL to an optional initial repre-
sentation metadata, as well as a list of media segments. Each
media segment may have been assigned a starttime, a
duration and a locator. The starttime typically expresses an
approximation of the media time of the contained media in
a segment, but not necessarily a sample accurate time. The
starttime is used by the HTTP streaming client to issue the
download request at the appropriate time. The generation of
the segment list, including the start time of each, may be
done in different ways. The URLs may be provided as a play
list or a URL construction rule may advantageously be used
for a compact representation of the segment list.

A segment list based on URL construction may, for
example, be carried out if the MPD signals that by a specific
attribute or element such as FileDynamiclnfo or an equiva-
lent signal. A generic way to create a segment list from a
URL construction is provided below in the “URL Construc-
tion Overview” section. A playlist-based construction may,
for example, be signaled by a different signal. Secking in
segment list and getting to an accurate media time is also
advantageously implemented in this context.

URL Constructor Overview

As previously described, in one embodiment of the pres-
ent invention there may be provided a metadata file con-
taining URL construction rules which allow client devices to
construct the file identifiers for Blocks of the presentation.
We now describe a further novel enhancement to the block
request streaming system which provides for changes in the
metadata file, including changes to the URL construction
rules, changes to the number of available encodings,
changes to metadata associated with the available encodings
such as bitrate, aspect ratio, resolution, audio or video codec
or codec parameters or other parameters.

In this novel enhancement, there may be provided addi-
tional data associated with each element of the metadata file
indicating a time interval within the overall presentation.
Within this time interval the element may be considered
valid and otherwise the time interval the element may be
ignored. Furthermore, the syntax of the metadata may be
enhanced such that elements previously allowed to appear
only once or at most once may appear multiple times. An
additional restriction may be applied in this case that pro-
vides that for such elements the specified time intervals must
be disjoint. At any given time instant, considering only the
elements whose time interval contains the given time instant
results in a metadata file that is consistent with the original
metadata syntax. We call such time intervals validity inter-
vals. This method therefore provides for signaling within a
single metadata file changes of the kind described above.

US 9,432,433 B2

67

Advantageously, such a method can be used to provide a
media presentation that supports changes of the kind
described at specified points within the presentation.

URL Constructor

As described herein, a common feature of block-request
streaming systems is the need to provide the client with
“metadata” that identifies the available media encodings and
provides information needed by the client to request the
blocks from those encodings. For example in the case of
HTTP this information might comprise URLs for the files
containing the media blocks. A playlist file may be provided
which lists the URLs for the blocks for a given encoding.
Multiple playlist files are provided, one for each encoding,
together with a master playlist-of-playlists that lists the
playlists corresponding to the different encodings. A disad-
vantage of this system is that the metadata can become quite
large and therefore takes some time to be requested when the
client begins the stream. A further disadvantage of this
system is evident in the case of live content, when the files
corresponding to the media data blocks are generated “on-
the-fly” from a media stream which is being captured in real
time (live), for example a live sports event or news program.
In this case the playlist files may be updated each time a new
block is available (for example every few seconds). Client
devices may repeatedly fetch the playlist file to determine if
new blocks are available and obtain their URLs. This may
place a significant load on the serving infrastructure and in
particular means that metadata files cannot be cached for
longer than the update interval, which is equal to the block
size which is commonly of the order of a few seconds.

One important aspect of a block-request streaming system
is the method used to inform clients of the file identifiers, for
example URLs, that should be used, together with the file
download protocol, to request Blocks. For example, a
method in which for each representation of a presentation
there is provided a playlist file which lists the URLs of the
files containing the Blocks of media data. A disadvantage of
this method is that at least some of the playlist file itself
needs to be downloaded before playout can begin, increas-
ing the channel zapping time and therefore causing a poor
user experience. For a long media presentation with several
or many representations, the list of file URLs may be large
and hence the playlist file may be large further increasing the
channel zapping time.

Another disadvantage of this method occurs in the case of
live content. In this case, the complete list of URLs is not
made available in advance and the playlist file is periodically
updated as new blocks become available and clients peri-
odically request the playlist file, in order to receive the
updated version. Because this file is frequently updated it
cannot be stored for long within the caching proxy servers.
This means that very many of the requests for this file will
be forwarded to other servers and eventually to the server
which generates the file. In the case of a popular media
presentation this may result in a high load on this server and
the network, which may in turn result in a slow response
time and therefore a high channel zapping time and poor
user experience. In the worst case the server becomes
overloaded and this results in some users being unable to
view the presentation.

It is desirable in the design of a block-request streaming
system to avoid placing restrictions on the form of the file
identifiers that may be used. This is because a number of
considerations may motivate the use of identifiers of a
particular form. For example, in the case that the Block
Serving Infrastructure is a Content Delivery Network there

35

40

45

68

may be file naming or storage conventions related to a desire
to distribute storage or serving load across the network or
other requirements which lead to particular forms of file
identifier which cannot be predicted at system design time.

A further embodiment is now described which mitigates
the above mentioned disadvantages while retaining flexibil-
ity to choose appropriate file identification conventions. In
this method metadata may be provided for each represen-
tation of the media presentation comprising a file identifier
construction rule. The file identifier construction rule may
for example comprise a text string. In order to determine the
file identifier for a given block of the presentation, a method
of interpretation of the file identifier construction rule may
be provided, this method comprising determination of input
parameters and evaluation of the file identification construc-
tion rule together with the input parameters. The input
parameters may for example include an index of the file to
be identified, where the first file has index zero, the second
has index one, the third has index two and so on. For
example, in the case that every file spans the same time
duration (or approximately the same time duration), then the
index of the file associated with any given time within the
presentation can easily be determined. Alternatively, the
time within the presentation spanned by each file may be
provided within the presentation or version metadata.

In one embodiment, the file identifier construction rule
may comprise a text string that may contain certain special
identifiers corresponding to the input parameters. The
method of evaluation of the file identifier construction rule
comprises determining the positions of the special identifiers
within the text string and replacing each such special iden-
tifier with a string representation of the value of the corre-
sponding input parameter.

In another embodiment, the file identifier construction
rule may comprise a text string conforming to an expression
language. An expression language comprises a definition of
a syntax to which expressions in the language may conform
and a set of rules for evaluating a string conforming to the
syntax.

A specific example will now be described, with reference
to FIG. 21 et seq. An example of a syntax definition for a
suitable expression language, defined in Augmented
Backus-Naur Form, is as shown in FIG. 21. An example of
rules for evaluating a string conforming to the <expression>
production in FIG. 21 comprises recursively transforming
the string conformant to the <expression> production (an
<expression>) into a string conformant to the <literal>
production as follows:

An <expression> conformant to the <literal> production
is unchanged.

An <expression> conformant to the <variable> produc-
tion is replaced with the value of the variable identified by
the <token> string of the <variable> production.

An <expression> conformant to the <function> produc-
tion is evaluated by evaluating each of its arguments accord-
ing to these rules and applying a transformation to these
arguments dependent on the <token> element of the <func-
tion> production as described below.

An <expression> conformant to the last alternative of the
<expression> production is evaluated by evaluating the two
<expression> elements and applying an operation to these
arguments dependent on the <operator> element of the last
alternative of the <expression> production as described
below.

In the method described above it is assumed that the
evaluation takes place in a context in which a plurality of
variables may be defined. A variable is a (name, value) pair

US 9,432,433 B2

69

where “name” is a string conformant to the <token> pro-
duction and “value” is a string conformant to the <literal>
production. Some variables may be defined outside the
evaluation process before evaluation begins. Other variables
may be defined within the evaluation process itself. All
variables are “global” in the sense that only one variable
exists with each possible “name”.

An example of a function is the “printf” function. This
function accepts one or more arguments. The first argument
may be conformant to the <string> production (hereinafter
a “string”). The printf function evaluates to a transformed
version of its first argument. The transformation applied is
the same as the “printf” function of the C standard library,
with the additional arguments included in the <function>
production supplying the additional arguments expected by
the C standard library printf function.

Another example of a function is the “hash” function.
This function accepts two arguments, the first of which may
be a string and the second of which may be conformant to
the <number> production (hereinafter a “number”). The
“hash” function applies a hash algorithm to the first argu-
ment and returns a results which is a nonnegative integer
number less than the second argument. An example of a
suitable hash function is given in the C function shown in
FIG. 22, whose arguments are the input string (excluding the
enclosing quotation marks) and the numeric input value.
Other examples of hash functions are well known to those of
skill in the art.

Another example of a function is the “Subst” function
which takes one, two or three string arguments. In the case
that one argument is supplied the result of the “Subst”
function is the first argument. In the case that two arguments
are supplied then the result of the “Subst” function is
computed by erasing any occurrences of the second argu-
ment (excluding the enclosing quotation marks) within the
first argument and returning the first argument so modified.
In the case that three arguments are supplied then the result
of the “Subst” function is computed by replacing any
occurrences of the second argument (excluding the enclos-
ing quotation marks) within the first argument with the third
argument (excluding the enclosing quotation marks) and
returning the first argument so modified.

Some examples of operators are the addition, subtraction,
division, multiplication and modulus operators, identified by
the <operator> productions ‘+’, ‘=’, */°, “*’ “%’ respectively.
These operators require that the <expression> productions
either side of the <operator> production evaluate to num-
bers. The evaluation of the operator comprises applying the
appropriate arithmetic operation (addition, subtraction, divi-
sion, multiplication and modulus respectively) to these two
numbers in the usual way and returning the result in a form
compliant to the <number> production.

Another example of an operator is the assignment opera-
tor, identified by the <operator> production ‘=". This opera-
tor requires that the left argument evaluates to a string the
content of which is compliant to the <token> production.
The content of a string is defined to be the character string
within the enclosing quotation marks. The equality operator
causes the variable whose name is the <token> equal to the
content of the left argument to be assigned a value equal to
the result of evaluating the right argument. This value is also
the result of evaluating the operator expression.

Another example of an operator is the sequence operator,
identified by the <operator> production °;”. The result of
evaluating this operator is the right argument. Note that as
with all operators, both arguments are evaluated and the left
argument is evaluated first.

20

40

45

55

70

In one embodiment of this invention the identifier of a file
may be obtained by evaluating a file identifier construction
rule according to the above rule with a specific set of input
variables which identify the required file. An example of an
input variable is the variable with name “index” and value
equal to the numeric index of the file within the presentation.
Another example of an input variable is the variable with
name “bitrate” and value equal to the average bitrate of the
required version of the presentation.

FIG. 23 illustrates some examples of file identifier con-
struction rules, where the input variables are “id”, giving an
identifier for the representation of the presentation desired
and “seq”, giving a sequence number for the file

As will be clear to those of skill in the art upon reading
this disclosure, numerous variations of the method above are
possible. For example, not all the functions and operators
described above may be provided or additional functions or
operators may be provided.

URL Construction Rules and Timing

This section provides basic URI Construction Rules to
assign a file or segment URI as well as a start time for each
segment within a representation and the media presentation.

For this clause the availability of a media presentation
description at the client is assumed.

Assume that the HTTP streaming client is playing out
media that is downloaded within a media presentation. The
HTTP client’s actual presentation time may be defined as to
where the presentation time is relative to the start of the
presentation. At initialization, the presentation time t=0 can
be assumed.

At any point t, the HTTP client may download any data
with play-time tP (also relative to the start of the presenta-
tion) at most MaximumClientPreBufferTime ahead of the
actual presentation time t and any data that is required due
to a user interaction, e.g. seek, fast-forward, etc. In some
embodiments the MaximumClientPreBufferTime may not
even be specified in a sense that a client can download data
ahead of the current play-time tP without restrictions.

The HTTP client may avoid downloading unnecessary
data, e.g. any segments from representations that are not
expected to be played-out may typically not be downloaded.

The basic process in providing the streaming services may
be the downloading of data by the generation of appropriate
requests to download entire files/segments or subset of
files/segments, for example by using HT'TP GET requests or
HTTP partial GET requests. This description addresses how
to access the data for a specific play-time tP but generally the
client may download data for a larger time range of play-
time to avoid inefficient requests. The HTTP client may
minimize the number/frequency of HTTP requests in pro-
viding the streaming service.

For accessing media data at play-time tP or at least close
to the play-time tP in a specific representation the client
determines the URL to the file that contains this play-time
and in addition determines the byte range in the file to access
this play-time.

The Media Presentation Description may assign a repre-
sentation id, r, to each representation, for example by the use
of the RepresentationlD attribute. In other words, the con-
tent of the MPD, when written by the ingestion system or
when read by the client, will be interpreted such that there
is an assignment. In order to download data for a specific
play-time tP for a specific representation with id r, the client
may construct an appropriate URI for a file.

The Media Presentation Description may assign each file
or segment of each representation r the following attributes:

US 9,432,433 B2

71
(a) a sequence number i of the file within the represen-
tation r, with i=1, 2, . . ., Nr, (b) the relative start time of the

file with representation id r and file index i relative to the
presentation time, defined as ts(r,i), (c) the file URI for the
file/segment with representation id r and file index i, denoted
as FileURI(x, 1).

In one embodiment the start time of the file and the file
URIs may be provided explicitly for a representation. In
another embodiment, a list of file URIs may be provided
explicitly where each file URI gets inherently assigned the
index i according to the position in the list and the start time
of'the segment is derived as the sum of all segment durations
for the segments from 1 to i-1. The duration of each segment
may be provided according to any of the rules discussed
above. For example, any skilled in basic mathematics may
use other methods to derive a methodology to easily derive
start time from a single element or attribute and the position/
index of the file URI in the representation.

If a dynamic URI construction rule is provided in the
MPD, then the start time of each file and each file URI may
be constructed dynamically by using a construction rule, the
index of the requested file and potentially some additional
parameters provided in the media presentation description.
The information may for example be provided in MPD
attributes and elements such as FileURIPattern and Fileln-
foDynamic. The FileURIPattern provides information on
how to construct the URIs based on the file index sequence
number i and the representation ID r. The FileURIFormat is
constructed as:

FileURIFormat=sprintf(“% s % s % s % s % s.% s”,
BaseURI, BaseFileName,

RepresentationiDFormat, SeparatorFormat,

FileSequenceiD Format, FileExtension);

and the FileURI(r,i) is constructed as:

FileURI(r,i)=sprintf(FileURIFormat, r,i);

The relative start time ts(r,i) for each file/segment may be
derived by some attribute contained in the MPD describing
the duration of the segments in this representation, for
example the FileInfoDynamic attribute. The MPD may also
contain a sequence of FileInfoDynamic attributes that is
global for all representations in the media presentation or at
least for all representations in a period in the same way as
specified above. If media data for a specific play-time tP in
representation r is requested, the corresponding index i(r, tP)
may be derived as i(t, t,) such that that the play-time of this
index is in the interval of the start time of ts(r, i(r, tP)) and
ts(t, i(r, tP)+1). The segment access may be further restricted
by cases above, for example the segment is not accessible.

To access the exact play-time tP once the index and the
URI of the corresponding segment is obtained depends on
the actual segment format. In this example assume that the
media segments has a local time line that starts at 0 without
loss of generality. To access and present the data at play-time
tP the client may download the data corresponding to the
local time from the file/segment that can be accessed
through the URI FileURI(r,i) with i=i(r, t,).

Generally, clients may download the entire file and can
then access the play-time tP. However, not necessarily all
information of the 3GP file needs to be downloaded, as the
3GP file provides structures to map the local timing to byte
ranges. Therefore, only the specific byte ranges to access
play-time tP may be sufficient to play the media as long as
sufficient random access information is available. Also suf-
ficient information on structure and mapping of the byte
range and the local timing of the media segment may be
provided in the initial part of the segment, for example using
a segment index. By having access to the initial e.g., 1200

10

15

20

25

30

35

40

45

50

55

60

65

72

bytes of the segment, the client may have sufficient infor-
mation to directly access the byte range necessary to play
time tP.

In a further example assume that the segment index,
possibly specified as the “tidx” box as below may be used to
identify the byte offsets of the required Fragment or Frag-
ments. Partial GET requests may be formed for the required
Fragment or Fragments. There are other alternatives, for
example, the client may issue a standard request for the file
and cancel this when the first “tidx” box has been received.
Seeking

A client may attempt to seek to a specific presentation
time tp in a representation. Based on the MPD, the client has
access to the media segment start time and media segment
URL of each segment in the representation. The client may
get the segment index segment_index of the segment most
likely to contain media samples for presentation time tp as
the maximum segment index i, for which the start time
tS(r,1) is smaller or equal to the presentation time tp i.e.
segment_index=max{iltS(r,i)<=tp}. The segment URL is
obtained as FileURI(r,i).

Note that timing information in the MPD may be approxi-
mate, due to issues related to placement of Random Access
Points, alignment of media tracks and media timing drift. As
a result, the segment identified by the procedure above may
begin at a time slightly after tp and the media data for
presentation time tp may be in the previous media segment.
In the case of seeking, either the seek time may be updated
to equal the first sample time of the retrieved file, or the
preceding file may be retrieved instead. However, note that
during continuous playout, including cases where there is a
switch between alternative representations/versions, the
media data for the time between tp and the start of the
retrieved segment is nonetheless available.

For accurate seeking to a presentation time tp, the HTTP
streaming client needs to access a random access point
(RAP). To determine the random access point in a media
segment in the case of 3GPP Adaptive HT TP Streaming, the
client may, for example, use the information in the ‘tidx’ or
‘sidx’ box, if present, to locate the random access points and
the corresponding presentation time in the media presenta-
tion. In cases where a segment is a 3GPP movie fragment,
it is also possible for the client to use information within the
‘moof” and ‘mdat’ boxes, for example, to locate RAPs and
obtain the necessary presentation time from the information
in the movie fragment and the segment start time derived
from the MPD. If no RAP with presentation time before the
requested presentation time tp is available, the client may
either access the previous segment or may just use the first
random access point as the seek result. When media seg-
ments start with a RAP, these procedures are simple.

Also note that not necessarily all information of the media
segment needs to be downloaded to access the presentation
time tp. The client may, for example, initially request the
‘tidx” or ‘sidx’ box from the beginning of the media segment
using byte range requests. By use of the ‘“tidx’ or ‘sidx’
boxes, segment timing can be mapped to byte ranges of the
segment. By continuously using partial HTTP requests, only
the relevant parts of the media segment need be accessed, for
improved user experience and low start-up delays.
Segment List Generation

As described herein, it should be apparent how to imple-
ment a straightforward HTTP streaming client that uses the
information provided by the MPD to create a list of seg-
ments for a representation that has a signalled approximate
segment duration of dur. In some embodiments, the client
may assign the media segments within a representation

US 9,432,433 B2

73

consecutive indices i=1, 2, 3, . . ., ie., the first media
segment is assigned index i=1, the second media segment is
assigned the index i=2, and so on. Then, the list of media
segments with segment indices i is assigned startTime[i] and
URLJ1] is generated, for example, as follows. First, the index
iis set to 1. The start time of the first media segment is
obtained as 0, startTime[1]=0. The URL of the media
segment i, URL[i], is obtained as FileURI(r, 1). The process
is continued for all described media segments with index i
and the startTime[i] of media segment i is obtained as
(i-1)*dur and the URL[i], is obtained as FileURI(x, 1).
Concurrent HTTP/TCP Requests

A concern in a block-request streaming system is a desire
to always request the highest-quality blocks that can be
completely received in time for playout. However, the data
arrival rate may not be known in advance and so it may
happen that a requested block does not arrive in time to be
played out. This results in a need to pause the media playout,
which results in a poor user experience. This problem can be
mitigated by client algorithms that take a conservative
approach to the selection of blocks to request by requesting
blocks of lower quality (and so of lower size) that are more
likely to be received in time, even if the data arrival rate falls
during the reception of the block. However this conservative
approach has the disadvantage of possibly delivering a lower
quality playout to the user or destination device, which is
also a poor user experience. The problem may be magnified
when multiple HTTP connections are used at the same time
to download different blocks, as described below, since
available network resources are shared across connections
and thus are being simultaneously used for blocks with
different playout times.

It may be advantageous for the client to issue requests for
multiple blocks concurrently, where in this context “concur-
rently” means responses to requests are occurring in over-
lapping time intervals, and it is not necessarily the case that
the requests are made at precisely or even approximately the
same time. In the case of the HTTP protocol, this approach
may improve utilization of the available bandwidth due to
the behavior of the TCP protocol (as is well known). This
can be especially important to improve the content zapping
time, as when a new content is first requested the corre-
sponding HTTP/TCP connections over which data for the
blocks is requested might be slow to start, and thus using
several HTTP/TCP connections at this point can dramati-
cally speed up the data delivery time of the first blocks.
However, requesting different blocks or fragments over
different HTTP/TCP connections can also lead to degraded
performance, as the requests for the blocks that are to be
played out first are competing with the requests for the
subsequent blocks, competing HTTP/TCP downloads vary
greatly in their delivery speed and thus the completion time
of the request can be highly variable, and it is generally not
possible to control which HTTP/TCP downloads will com-
pletely quickly and which will be slower, and thus it is likely
that at least some of the time the HTTP/TCP downloads of
the first few blocks will be the last to complete, thus leading
to large and variable channel zapping times.

Suppose that each block or fragment of a segment is
downloaded over a separate HI'TP/TCP connection, and that
the number of parallel connections is n and the playout
duration of each block is t seconds, and that the streaming
rate of the content associated with the segment is S. When
the client first begins to stream the content, requests may be
issued for the first n blocks, representing n*t seconds of
media data.

25

40

45

74

As is known to those of skill in the art, there is a large
variation in the data rate of TCP connections. However, to
simplify this discussion, suppose ideally that all connections
are proceeding in parallel such that the first block will be
completely received at about the same time as the other n—1
blocks requested. To simplify the discussion further, assume
that the aggregate bandwidth utilized by the n download
connections is fixed to a value B for the entire duration of the
download, and that the streaming rate S is constant over the
entire representation. Suppose further that the media data
structure is such that playout of a block can be done when
the entire block is available at the client, i.e., playout of a
block can only start after the entire block is received, e.g.,
due to the structure of the underlying video encoding, or
because encryption is being employed to encrypt each
fragment or block separately, and thus the entire fragment or
block needs to be received before it can be decrypted. Thus,
to simplify the discussion below, we assume that an entire
block needs to be received before any of the block can be
played out. Then, the time required before the first block has
arrived and can be played out is approximately n*t*S/B.

Since it is desirable to minimize content zapping time, it
is therefore desirable to minimize n*t*S/B. The value of t
may be determined by factors such as the underlying video
encoding structure and how the ingestion methods are
utilized, and thus t can be reasonably small, but very small
values of t lead to an overly complicated segment map and
possibly may be incompatible with efficient video encoding
and decryption, if used. The value of n may also affect the
value of B, i.e., B may be larger for a larger number n of
connections, and thus reducing the number of connections,
n, has the negative side effect of potentially reducing the
amount of available bandwidth that is utilized, B, and so
may not be effective in achieving the goal of reducing the
content zapping time. The value of S depends on which
representation is chosen to download and playout, and
ideally S should be as close to B as possible in order to
maximize the playout quality of the media for the given
network conditions. Thus, to simplify this discussion,
assume that S is approximately equal to B. Then, the channel
zapping time is proportional to n*t. Thus, utilizing more
connections to download different fragments can degrade
the channel zapping time if the aggregate bandwidth utilized
by the connections is sub-linearly proportional to the num-
ber of connections, which is typically the case.

As an example, suppose t=1 second, and with n=1 the
value of B=500 Kbps, and with n=2 the value of B=700
Kbps, and with n=3 the value of B=800 Kbps. Suppose that
the representation with S=700 Kbps is chosen. Then, with
n=1 the download time for the first block is 1*700/500=1.4
seconds, with n=2 the download time for the first block is
2*700/700=2 seconds, and with n=3 the download time for
the first block is 3*700/800=2.625 seconds. Furthermore, as
the number of connections increases the variability in the
individual download speeds of the connections is likely to
increase (although even with one connection there is likely
to be some significant variability). Thus, in this example, the
channel zapping time and the variability in the channel
zapping time increases as the number of connections
increases. Intuitively, the blocks that are being delivered
have different priorities, i.e., the first block has the earliest
delivery deadline, the second block has the second earliest
deadline, etc., whereas the download connections over
which the blocks are being delivered are competing for
network resources during the delivery, and thus the blocks
with the earliest deadlines become more delayed as more
competing blocks are requested. On the other hand, even in

US 9,432,433 B2

75

this case, ultimately using more than one download connec-
tion allows support of a sustainably higher streaming rate,
e.g, with three connections a streaming rate of up to 800
Kbps can be supported in this example, whereas only a
stream of 500 Kbps can be supported with one connection.

In practice, as noted above, the data rate of a connection
may be highly variable both within the same connection
over time and between connections and, as a result, the n
requested blocks generally do not complete at the same time
and in fact it can commonly be the case that one block may
complete in halfthe time of another block. This effect results
in unpredictable behavior since in some cases the first block
may complete much sooner than other blocks and in other
cases the first block may complete much later than other
blocks, and as a result the beginning of playout may in some
cases occur relatively quickly and in other cases may be
slow to occur. This unpredictable behavior may be frustrat-
ing for the user and may therefore be considered a poor user
experience.

What is needed therefore are methods in which multiple
TCP connections can be utilized to improve the channel
zapping time and the variability in channel zapping time,
while at the same time supporting a good quality streaming
rate possible. What is also needed are methods to allow for
the share of available bandwidth allocated to each block to
be adjusted as the playout time of a block approaches, so
that, if necessary, a greater share of available bandwidth can
be allocated towards the block with the nearest playout time.
Cooperative HTTP/TCP Requesting

We now describe methods for using concurrent HTTP/
TCP requests in a cooperative fashion. A receiver may
employ multiple concurrent cooperative HTTP/TCP
requests, for example using a plurality of HTTP byte-range
requests, wherein each such request is for a portion of a
fragment in a source segment, or all of a fragment of a
source segment, or a portion or a repair fragment of a repair
segment, or for all of a repair fragment of a repair segment.

The advantages of cooperative HTTP/TCP requests
together with usage of FEC repair data may be especially
important to provide consistently quick channel zapping
times. For example, at a channel zapping time it is likely that
the TCP connections have either just been started or have
been idle for some period of time, in which case the
congestion window, cwnd, is at its minimal value for the
connections, and thus the delivery speed of these TCP
connections will take several round-trip times (RTTs) to
ramp up, and there will be high variability in the delivery
speeds over the different TCP connections during this ramp-
up time.

An overview of the No-FEC method is now described,
which is a cooperative HTTP/TCP request method wherein
only media data of source blocks is requested using multiple
concurrent HTTP/TCP connections, i.e., no FEC repair data
is requested. With the No-FEC method, portions of the same
fragment are requested over different connections, e.g.,
using HTTP byte range requests for portions of the fragment,
and thus for example each HTTP byte range request is for a
portion of the byte range indicated in the segment map for
the fragment. It may be the case that an individual HTTP/
TCP request ramps up it delivery speed to fully utilize the
available bandwidth over several RTTs (round-trip times),
and thus there is a relative long period of time where the
delivery speed is less than the available bandwidth, and thus
if a single HTTP/TCP connection is used to download for
example the first fragment of a content to be played out, the
channel zapping time could be large. Using the No-FEC
method, downloading different portions of the same frag-

10

15

20

25

30

35

40

45

50

55

60

65

76

ment over different HTTP/TCP connections can signifi-
cantly reduce the channel zapping time.

An overview of the FEC method is now described, which
is a cooperative HT'TP/TCP request method wherein media
data of'a source segment and FEC repair data generated from
the media data is requested using multiple concurrent HT'TP/
TCP connections. With the FEC method, portions of the
same fragment and FEC repair data generated from that
fragment are requested over different connections, using
HTTP byte range requests for portions of the fragment, and
thus for example each HTTP byte range request is for a
portion of the byte range indicated in the segment map for
the fragment. It may be the case that an individual HTTP/
TCP request ramps up it delivery speed to fully utilize the
available bandwidth over several RTTs (round-trip times),
and thus there is a relative long period of time where the
delivery speed is less than the available bandwidth, and thus
if a single HTTP/TCP connection is used to download for
example the first fragment of a content to be played out, the
channel zapping time could be large. Using the FEC method
has the same advantages as the No-FEC method, and has the
additional advantage that not all of the requested data needs
to arrive before the fragment can be recovered, thus further
reducing the channel zapping time and the variability in the
channel zapping time. By making requests over different
TCP connections, and over-requesting by also requesting
FEC repair data on at least one of the connections, the
amount of time it takes to deliver a sufficient amount of data
to for example recover the first requested fragment that
enables media playback to start, can be greatly reduced and
made to be much more consistent than if cooperative TCP
connections and FEC repair data was not used.

FIGS. 24(a)-(e) show an example of the delivery rate
fluctuations of 5 TCP connections running over the same
link to the same client from the same HTTP web server of
an emulated evolution data optimized (EVDO) network. In
FIGS. 24(a)-(e), the X-axis shows time in seconds, and the
Y-axis shows the rate at which bits are received at the client
over each of the 5 TCP connections measured over intervals
of 1 second, for each connection. In this particular emula-
tion, there were 12 TCP connections in total running over
this link, and thus the network was relatively loaded during
the time shown, which might be typical when more than one
client is streaming within the same cell of a mobile network.
Note that although the delivery rates are somewhat corre-
lated over time, there are wide difference in the delivery
rates of the 5 connections at many points in time.

FIG. 25 shows a possible request structure for a fragment
that is 250,000 bits in size (approximately 31.25 kilobytes),
where there are 4 HTTP byte range requests made in parallel
for different parts of the fragment, i.e., the first HTTP
connection requests the first 50,000 bits, the second HTTP
connection requests the next 50,000 bits, the third HTTP
connection requests the next 50,000 bits, and the fourth
HTTP connection requests the next 50,000 bits. If FEC is not
used, i.e., the No-FEC method, then these are the only 4
requests for the fragment in this example. If FEC is used,
i.e., the FEC method, then in this example there is one
additional HTTP connection that requests an additional
50,000 bits of FEC repair data of a repair segment generated
from the fragment.

FIG. 26 is a blowup of the first couple of seconds of the
5 TCP connections shown in FIGS. 24(a)-(e), where in FIG.
26 the X-axis shows time at intervals of 100 milliseconds,
and the Y-axis shows the rate at which bits are received at the
client over each of the 5 TCP connections measured over
intervals of 100 milliseconds. One line shows the aggregate

US 9,432,433 B2

77

amount of bits that has been received at the client for the
fragment from the first 4 HTTP connections (excluding the
HTTP connection over which FEC data is requested), i.e.,
what arrives using the No-FEC method. Another line shows
the aggregate amount of bits that has been received at the
client for the fragment from all 5 of the HTTP connections
(including the HTTP connection over which FEC data is
requested), i.e., what arrives using the FEC method. For the
FEC method, it is assumed that the fragment can be FEC
decoded from reception of any 200,000 bits of the 250,000
requested bits, which can be realized if for example a
Reed-Solomon FEC code is used, and which can be essen-
tially realized if for example the RaptorQ code described in
Luby IV is used. For the FEC method in this example,
enough data is received to recover the fragment using FEC
decoding after 1 second, allowing a channel zapping time of
1 second (assuming that the data for subsequent fragments
can be requested and received before the first fragment is
fully played out). For the No-FEC method in this example,
all the data for the 4 requests has to be received before the
fragment can be recovered, which occurs after 1.7 seconds,
leading to a channel zapping time of 1.7 seconds. Thus, in
the example shown in FIG. 26, the No-FEC method is 70%
worse in terms of channel zapping time than the FEC
method. One of the reasons for the advantage shown by the
FEC method in this example is that, for the FEC method,
reception of any 80% of the requested data allows recovery
of the fragment, whereas for the No-FEC method, reception
0t 100% of the requested data is required. Thus, the No-FEC
method has to wait for the slowest TCP connection to finish
delivery, and because of natural variations in the TCP
delivery rate there is apt to be wide variance in the delivery
speed of the slowest TCP connection compared to an aver-
age TCP connection. With the FEC method in this example,
one slow TCP connection does not determine when the
fragment is recoverable. Instead, for the FEC method, the
delivery of enough data is much more a function of the
average TCP delivery rate than the worse case TCP delivery
rate.

There are many variations of the No-FEC method and the
FEC method described above. For example, the cooperative
HTTP/TCP requests may be used for only the first few
fragments after a channel zap has occurred, and thereafter
only a single HT'TP/TCP request is used to download further
fragments, multiple fragments, or entire segments. As
another example, the number of cooperative HTTP/TCP
connections used can be a function of both the urgency of the
fragments being requested, i.e., how imminent is the playout
time of these fragments, and of the current network condi-
tions.

In some variations, a plurality of HTTP connections may
be used to request repair data from repair segments. In other
variations, different amounts of data may be requested on
different HTTP connections, for example depending on the
current size of the media buffer and the rate of data reception
at the client. In another variation, the source representations
are not independent of one another, but instead represent a
layered media coding, where for example an enhanced
source representation may depend on a base source repre-
sentation. In this case, there may be a repair representation
corresponding to the base source representation, and another
repair representation corresponding to the combination of
the base and enhancement source representations.

Additional overall elements add to the advantages one
may realize by the methods disclosed above. For example,
the number of HTTP connections used may vary depending
on the current amount of media in the media buffer, and/or

10

15

20

25

30

35

40

45

50

55

60

65

78

the rate of reception into the media buffer. Cooperative
HTTP requests using FEC, i.e., the FEC method described
above and variants of that method, can be used aggressively
when the media buffer is relatively empty, e.g., more coop-
erative HT'TP requests are made in parallel for different parts
of the first fragment, requesting all of the source fragment
and a relatively large fraction of the repair data from the
corresponding repair fragment, and then transitioning to a
reduced number of concurrent HTTP requests, requesting
larger portions of the media data per request, and requesting
a smaller fraction of repair data, e.g., transitioning to 1, 2 or
3 concurrent HTTP requests, transitioning to making
requests for full fragments or multiple consecutive frag-
ments per request, and transitioning to requesting no repair
data, as the media buffer grows.

As another example, the amount of FEC repair data might
vary as a function of the media buffer size, i.c., when the
media buffer is small then more FEC repair data might be
requested, and as the media buffer grows then the amount of
FEC repair data requested might diminish, and at some point
when the media buffer is sufficiently large then no FEC
repair data may be requested, only data from source seg-
ments of source representations. The benefits of such
enhanced techniques is that they may allow faster and more
consistent channel zapping times, and more resilience
against potential media stutters or stalls, while at the same
time minimizing the amount of additional bandwidth used
beyond the amount that would be consumed by just deliv-
ering the media in the source segments by reducing both
request message traffic and FEC repair data, while at the
same time enabling support of the highest media rates
possible for the given network conditions.

Additional Enhancements when Using Concurrent HTTP
Connections

An HTTP/TCP request may be abandoned if a suitable
condition is met and another HTTP/TCP request may be
made to download data that may replace the data requested
in the abandoned request, wherein the second HTTP/TCP
request may request exactly the same data as in the original
request, e.g., source data; or overlapping data, e.g., some of
the same source data and repair data that had not been
requested in the first request; or completely disjoint data,
e.g., repair data that had not been requested in the first
request. An example of a suitable condition is that a request
fails due to the absence of a response from the Block Server
Infrastructure (BSI) within a provided time or a failure in the
establishment of a transport connection to the BSI or receipt
of an explicit failure message from the server or another
failure condition.

Another example of a suitable condition is that receipt of
data is proceeding unusually slowly, according to a com-
parison of a measure of the connection speed (data arrival
rate in response to the request in question) with the expected
connection speed or with an estimate of the connection
speed required to receive the response before the playout
time of the media data contained therein or another time
dependent upon that time.

This approach has advantage in the case that the BSI
sometimes exhibits failures or poor performance. In this case
the approach above increases the probability that the client
can continue reliable playout of the media data despite
failures or poor performance within the BSI. Note that in
some cases there may be advantage to designing the BSI in
such a way that it does exhibit such failures or poor
performance on occasions, for example such a design may
have a lower cost than an alternative design that does not
exhibit such failures or poor performance or which exhibits

US 9,432,433 B2

79

these less often. In this case the method described herein has
further advantage in that it permits the utilization of such a
lower cost design for the BSI without a consequent degra-
dation in the user experience.

In another embodiment, the number of requests issued for
data corresponding to a given block may be dependent on
whether a suitable condition with respect to the block is met.
If the condition is not met then the client may be restricted
from making further requests for the block if the successful
completion of all currently incomplete data requests for the
block would allow recovery of the block with high prob-
ability. If the condition is met then a larger number of
requests for the block may be issued, i.e., the restriction
above does not apply. An example of a suitable condition is
that the time until the scheduled playout time of the block or
another time dependent on that time falls below a provided
threshold. This method has advantage because additional
requests for data for a block are issued when receipt of the
block becomes more urgent, because the play out time of the
media data comprising the block is close. In the case of
common transport protocols such as HTTP/TCP, these addi-
tional requests have the effect of increasing the share of the
available bandwidth dedicated to data that contributes to
reception of the block in question. This reduces the time
required for reception of sufficient data to recover the block
to complete and therefore reduces the probability that the
block cannot be recovered before the scheduled play out
time of the media data comprising the block. As described
above, if the block cannot be recovered before the scheduled
play out time of the media data comprising the block than
the playout may pause resulting in a poor user experience
and therefore the method described here advantageously
reduces the probability of this poor user experience.

It should be understood that throughout this specification
references to the scheduled playout time of a block refers to
the time at which the encoded media data comprising the
block may first be available at the client in order to achieve
playout of the presentation without pausing. As will be clear
to those of skill in the art of media presentation systems, this
time is in practice slightly before the actual time of the
appearance of the media comprising the block at the physi-
cal transducers used for playout (screen, speaker etc.) since
several transformation functions may need to be applied to
the media data comprising the block to effect actual playout
of that block and these functions may require a certain
amount of time to complete. For example media data is
generally transported in compressed form and a decompres-
sion transformation may be applied.

Methods for Generating File Structures Supporting Coop-
erative HT'TP/FEC Methods

An embodiment to generate a file structure that may be
used advantageously by a client employing cooperative
HTTP/FEC methods is now described. In this embodiment,
for each source segment there is a corresponding repair
segment generated as follows. The parameter R indicates on
average how much FEC repair data is generated for the
source data in the source segments. For example, R=0.33
indicates that if a source segment contains 1,000 kilobytes of
data, then the corresponding repair segment contains
approximately 330 kilobytes of repair data. The parameter S
indicates the symbol size in bytes used for FEC encoding
and decoding. For example, S=64 indicates that the source
data and the repair data comprises symbols of size 64 bytes
each for the purposes of FEC encoding and decoding.

The repair segment can be generated for a source segment
as follows. Each fragment of the source segment is consid-
ered as a source block for FEC encoding purposes, and thus

10

15

20

25

30

35

40

45

50

55

60

65

80

each fragment is treated as a sequence of source symbols of
a source block from which repair symbols are generated.
The number of repair symbols in total generated for the first
i fragments is calculated as TNRS(i)=ceiling(R*B(1)/S),
wherein ceiling(x) is the function that outputs the smallest
integer with a value that is at least x. Thus, the number of
repair symbols generated for fragment i is NRS(1))=TNRS
(1)-TNRS@G-1).

The repair segment comprises a concatenation of the
repair symbols for the fragments, wherein the order of the
repair symbols within a repair segment is in the order of the
fragments from which they are generated, and within a
fragment the repair symbols are in order of their encoding
symbol identifier (ESI). The repair segment structure corre-
sponding to a source segment structure is shown in FIG. 27,
including a repair segment generator 2700.

Note that by defining the number of repair symbols for a
fragment as described above, the total number of repair
symbols for all previous fragments, and thus the byte index
into the repair segment, only depends on R, S, B(i-1) and
B(), and does not depend on any of the previous or
subsequent structure of the fragments within the source
segment. This is advantageous because it allows a client to
quickly compute the position of the start of a repair block
within the repair segment, and also quickly compute the
number of repair symbols within that repair block, using
only local information about the structure of the correspond-
ing fragment of the source segment from which the repair
block is generated. Thus, if a client decides to start down-
loading and playout of a fragment from the middle of a
source segment, it can also quickly generate and access the
corresponding repair block from within the corresponding
repair segment.

The number of source symbols in the source block
corresponding to fragment 1 is calculated as NSS(i)=ceiling
((B(1)-B(i-1))/S). The last source symbol is padded out with
zero bytes for the purposes of FEC encoding and decoding
if B(i)-B(i-1) is not a multiple of S, i.e., the last source
symbol is padded out with zero bytes so that it is S bytes in
size for the purposes of FEC encoding and decoding, but
these zero padding bytes are not stored as part of the source
segment. In this embodiment, the ESIs for the source symbol
are 0, 1, ..., NSS(i)-1 and the ESIs for the repair symbols
are NSS(), . . ., NSS(i))+NRS()-1.

The URL for a repair segment in this embodiment can be
generated from the URL for the corresponding source seg-
ment by simply adding for example the suffix “.repair” to the
URL of the source segment.

The repair indexing information and FEC information for
a repair segment is implicitly defined by the indexing
information for the corresponding source segment, and from
the values of R and S, as described herein. The time offsets
and the fragment structure comprising the repair segment are
determined by the time offsets and structure of the corre-
sponding source segment. The byte offset to the end of the
repair symbols in the repair segment corresponding to
fragment i can be calculated as RB(1)=S*ceiling(R*B(1)/S).
The number of bytes in the repair segment corresponding to
fragment i is then RB(i)-RB(i-1), and thus the number of
repair symbols corresponding to fragment i is calculated as
NRS@H)=(RB(@1)-RB(i-1))/S. The number of source symbols
corresponding to fragment i can be calculated as NSS(i)=
ceiling((B(1)-B(i-1))/S). Thus, in this embodiment, the
repair indexing information for a repair block within a repair
segment and the corresponding FEC information can be

US 9,432,433 B2

81

implicitly derived from R, S and the indexing information
for the corresponding fragment of the corresponding source
segment.

As an example, consider the example shown in FIG. 28,
showing a fragment 2 that starts at byte offset B(1)=6,410
and ends at byte offset B(2)=6,770. In this example, the
symbol size is S=64 bytes, and the dotted vertical lines show
the byte offsets within the source segment that correspond to
multiples of S. The overall repair segment size as a fraction
of the source segment size is set to R=0.5 in this example.
The number of source symbols in the source block for
fragment 2 is calculated as NSS(2)=ceiling((6,770-6,410)/
64)=ceil(5.625)=6, and these 6 source symbols have ESIs
0,...,5, respectively, wherein the first source symbol is the
first 64 bytes of fragment 2 that starts at byte index 6,410
within the source segment, the second source symbol is the
next 64 bytes of fragment 2 that starts at byte index 6,474
within the source segment, etc. The end byte offset of the
repair block corresponding to fragment 2 is calculated as
RB(2)=64*ceiling(0.5%6,770/64)=64*ceiling(52.89 . . .)=
64*53=3,392, and the start byte offset of the repair block
corresponding to fragment 2 is calculated as RB(1)=64*ceil-
ing(0.5%6,410/64)=64*ceiling(50.07 . . .)=64%51=3,264,
and thus in this example there are two repair symbols in the
repair block corresponding to fragment 2 with ESIs 6 and 7,
respectively, starting at byte offset 3,264 within the repair
segment and ending at byte offset 3,392.

Note that, in the example shown in FIG. 28, even though
R=0.5 and there are 6 source symbols corresponding to
fragment 2, the number of repair symbols is not 3, as one
might expect if one simply used the number of source
symbols to calculate the number of repair symbols, but
instead worked out to be 2 according to the methods
described herein. As opposed to simply using the number of
source symbols of a fragment to determine the number of
repair symbols, the embodiments described above make it
possible to calculate the positioning of the repair block
within the repair segment solely from the index information
associated with the corresponding source block of the cor-
responding source segment. Furthermore, as the number, K.
of source symbols in a source block grows, the number of
repair symbols, KR, of the corresponding repair block is
closely approximated by K*R, as in general, KR is at most
ceil(K*R) and KR is at least floor((K-1)*R), where floor(x)
is the largest integer that is at most x.

There are many variations of the above embodiments for
generating a file structure that may be used advantageously
by a client employing cooperative HTTP/FEC methods, as
one skilled in the art will recognize. As an example of an
alternate embodiment, an original segment for a represen-
tation may be partitioned into N>1 parallel segments,

wherein fori=l1, ..., N, a specified fraction F, of the original
segment is contained in the ith parallel segment, and where
the sum for i=1, . . . , N of F, is equal to 1. In this

embodiment, there may be one master segment map that is
used to derive the segment maps for all of the parallel
segments, similar to how the repair segment map is derived
from the source segment map in the embodiment described
above. For example, the master segment map may indicate
the fragment structure if all of the source media data was not
partitioned in parallel segments but instead contained in the
one original segment, and then the segment map for the ith
parallel segment can be derived from the master segment
map by calculating that, if the amount of media data in a first
prefix of fragments of the original segment is L bytes, then
the total number of bytes of this prefix in aggregate among
the first i parallel segment is ceil(L*G;,), where G, is the sum

10

15

20

25

30

35

40

45

50

55

60

65

82

over j=1, ..., iof F,. As another example of an alternate
embodiment, the segments may consist of the combination
of'the original source media data for each fragment followed
immediately by the repair data for that fragment, resulting in
a segment that contains a mixture of source media data and
repair data generated using an FEC code from that source
media data. As another example of an alternate embodiment,
a segment that contains a mixture of source media data and
repair data may be partitioned into multiple parallel seg-
ments containing a mixture of source media data and repair
data.

Further embodiments can be envisioned to one of ordi-
nary skill in the art after reading this disclosure. In other
embodiments, combinations or sub-combinations of the
above disclosed invention can be advantageously made. The
example arrangements of components are shown for pur-
poses of illustration and it should be understood that com-
binations, additions, re-arrangements, and the like are con-
templated in alternative embodiments of the present
invention. Thus, while the invention has been described with
respect to exemplary embodiments, one skilled in the art will
recognize that numerous modifications are possible.

For example, the processes described herein may be
implemented using hardware components, software compo-
nents, and/or any combination thereof. In some cases, the
software components can be provided on tangible, non-
transitory media for execution on hardware that is provided
with the media or is separate from the media. The specifi-
cation and drawings are, accordingly, to be regarded in an
illustrative rather than a restrictive sense. It will, however, be
evident that various modifications and changes may be made
thereunto without departing from the broader spirit and
scope of the invention as set forth in the claims and that the
invention is intended to cover all modifications and equiva-
lents within the scope of the following claims.

What is claimed is:

1. A computer-implemented method, comprising:

obtaining data representing media of a presentation;

storing the data representing media of the presentation as
a plurality of segments, wherein one or more of the
plurality of segments includes a plurality of blocks, and
wherein each block includes a plurality of frames;

storing correspondence data associated with at least one
segment, wherein the stored correspondence data
includes a correspondence between at least one time
indicator and at least one position of at least one block
within the at least one segment;

transmitting a segment and a segment index to a client,

wherein the segment index includes correspondence
data associated with the segment, and wherein the
segment index allows the client to specify a position of
one or more blocks within the segment to include in one
or more requests;

receiving a request for a block from the client, wherein the

request includes a specified position of the block within
the segment; and

transmitting the block to the client in response to the

request from the client for the block.

2. The method of claim 1, wherein the stored correspon-
dence data is stored as part of a file that also contains
corresponding media data.

3. The method of claim 1, wherein the stored correspon-
dence data is a map formatted as XML metadata, wherein
the time indicator is a time range relative to a beginning of
the presentation or relative to a beginning of a media block.

4. The method of claim 1, wherein the plurality of blocks
and the stored correspondence data are generated by a media

US 9,432,433 B2

83

ingestion system and stored on a general purpose server that
responds at least to file requests.

5. The method of claim 4, wherein the file requests are
HTTP requests.

6. The method of claim 1, wherein the plurality of blocks
are of variable duration and the stored correspondence data
allows client devices to determine time range and data
location correspondences that can vary depending on the
variable durations of media blocks.

7. The method of claim 1, wherein a group of pictures
(GoP) is partitioned into more than one media block.

8. A method, in a client device that is capable of present-
ing a media presentation over a presentation time period, of
determining requests to make of a media server, the method
comprising:

obtaining, at the client device, a list of segments of the

media presentation, wherein the client device is con-

10

15

84

figured to transmit a request for a segment, wherein the
segment includes a plurality of blocks, and wherein
each block includes a plurality of frames;
determining, at the client device, a desired time period of
the media presentation, wherein the desired time period
is less than all of the presentation time period;
obtaining, at the client device, stored correspondence data
that includes a correspondence between at least one
time indicator and at least one data range of a block
within a segment of the media presentation;
determining, at the client device, and from the stored
correspondence data, a position of at least one block
within the segment to include in a request for the at
least one block from the media server;
transmitting the request for the at least one block; and
presenting the media presentation.

#* #* #* #* #*

